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This paper proposes an asymptotic one-sided N(0, 1) test for independence
between two stationary time series using the empirical characteristic function.
Unlike the tests based on the cross-correlation function (e.g. Haugh, 1976;
Hong, 1996; Koch & Yang 1986), the proposed test has power against all
pairwise cross-dependencies, including those with zero cross-correlation. By
differentiating the empirical characteristic function at the origin, the present
approach yields a modified version of Hong’s (1996) test, which in turn gen-
eralizes Haugh’s (1976) test. Other new tests can be derived by further dif-
ferentiating the empirical characteristic function properly. A simulation study
compares the new test with those of Haugh (1976), Hong (1996) and Koch &
Yang (1986) in finite samples; the results show that the new test has reason-
able sizes and good powers against linear and nonlinear cross-dependencies.
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1. INTRODUCTION

Testing independence between time series is important in multivari-
ate time series analysis. Haugh (1976) proposes a popular test by first
prewhitening two time series and then testing whether the two residual
series are independent via the residual cross-correlation function (see also
Pierce, 1977; Pierce & Haugh, 1977). Haugh’s statistic is based on the sum
of squared residual cross-correlations of finitely many lags and has a null
chi-square distribution. Koch & Yang (1986) extended Haugh’s approach
by accounting for a possible pattern among successive cross-correlation co-
efficients. The test places more weights on successful coefficients that fall
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on the same side of zero. This yields good power against alternatives in
which two time series are related over a long distributed lag with rela-
tively small lag coefficients of same sign. The test statistic is distributed as
an infinite sum of weighted chi-square random variables, with the weights
determined by the eigenvalues of some known matrix. Kock & Yang use
Satterthwaite’s (1941, 1946) chi-square approximation for the nonstandard
distribution. Alternatively, Hong (1996) recently proposed an asymptotic
one-sided N(0, 1) test by extending Haugh’s approach via a frequency do-
main approach. Hong’s test is based on the weighted sum of squared resid-
ual cross-correlations of various lags, where the weights depend on a kernel
function used to estimate the residual coherency function. Typically, larger
weights are assigned to lower order lags and smaller weights to higher order
lags. Haugh’s test can be viewed as a special case using the truncated kernel
or uniform weighting. Both theory and simulation show that non-uniform
weighting generally has better power than uniform weighting.

While the cross-correlation function provides a natural and convenient
tool to investigate causal relationships between two time series, it only
captures linear associations between two time series. There exist alterna-
tives in which two time series exhibit zero cross-correlation but are not
independent. For instance, some financial time series may have no or little
associations with each other in mean but exhibit strong mutual dependence
in variance or higher moments (e.g. Engle & Susmel, 1993). For such al-
ternatives, the tests based on the cross-correlation function will have little
power. The inconsistency of the cross-correlation based tests is unsatisfying
from both theoretical and practical points of view.

In this paper, we extend Hong’s (1996) approach and construct an asymp-
totic one-sided N(0, 1) test using the empirical characteristic function. The
test is able to detect nonlinear dependencies missed by cross-correlation
based tests. We compare the pairwise joint empirical characteristic func-
tion of the residuals of two time series with the product of their marginals
of various lags, with different weights assigned to different lags. The test
is consistent against all pairwise cross-dependencies between two time se-
ries, and is particularly powerful against alternatives in which the strength
of cross-dependence between two time series decays to zero as the lag
increases. Hong’s (1996) cross-correlation test can be derived from the
present approach by differentiating the empirical characteristic function at
the origin. A variety of other new tests can also be obtained by differenti-
ating the empirical characteristic function properly. We note that Csorgo
(1985), de Silva & Griffiths (1980), and Feuerverger (1988) used the em-
pirical characteristic function to test independence between two identically
independently distributed random variables. In the time series context,
Epps (1987, 1988) used the empirical characteristic function to test whether
a stationary time series is Gaussian or whether a Gaussian time series is
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stationary. Our approach differs from these works in many aspects and in
fact is a multivariate extension of Hong (1999), who considers hypothesis
testing in univariate time series via the empirical characteristic function.

In Section 2 we introduce test statistics. Asymptotic distribution and
consistency are established in Sections 3 & 4. In Section 5 a simulation
study is conducted to investigate finite sample performance of the new test
in comparison with those of Haugh (1976), Hong (1996), and Koch & Yang
(1986). The mathematical proofs are collected in the appendix.

2. THE TEST STATISTICS

As in Hong (1996), we consider a bivariate linear process:

Assumption A.1: Suppose (Xt, Yt) is a bivariate stationary linear process
such that

Xt =
∞∑

j=0

ajut−j , and Yt =
∞∑

j=0

bjvt−j , (t = 1, ..., n)

where (ut) and (vt) are each an independent and identically distributed
sequence respectively, with E(ut) = 0, E(vt) = 0, E(u4

t ) < ∞, E(v4
t ) < ∞;

both (aj) and (bj) are sequences of real numbers such that
∑∞

j=0 |aj | <

∞,
∑∞

j=0 |bj | < ∞ with a0 = b0 = 1. Furthermore, both A(z) =
∑∞

j=0 ajz
j

and B(z) =
∑∞

j=0 bjz
j are bounded and bounded away from zero for |z| ≤

1.

This assumption implies that Xt and Yt are invertible:

Xt =
∞∑

j=1

αjXt−j + ut, Yt =
∞∑

j=1

βjYt−j + vt,

where 1−
∑∞

j=1 αjL
j = (

∑∞
j=0 ajL

j)−1, 1−
∑∞

j=1 βjL
j = (

∑∞
j=0 bjL

j)−1,
and L is the lag operator. This includes as special cases autoregressive
moving-average models of finite orders, as assumed in Haugh (1976) and
Koch & Yang (1986). Given Assumption A.1, (Xt) and (Yt) are indepen-
dent if and only if innovations (ut) and (vt) are independent. Following
Haugh (1976), Hong (1996), and Koch & Yang (1986), we first prewhiten
(Xt) and (Yt) and test independence between their residuals (ût) and (v̂t),
say. As pointed out in Haugh (1976), this approach is much easier to handle
and interpret, because it filters out autodependence within Xt and within
Yt. Otherwise, autodependence would complicate test statistics and affect
their finite sample performances. Our approach permits use of the residuals
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from an autoregressive moving-average model, but misspecification of the
autoregressive moving-average model would invalidate the asymptotic dis-
tribution of the test statistic. Following Hong (1996), we consider residuals
from truncated autoregressions of orders p and q:

ût = Xt − α̂(p)′Xt(p), v̂t = Yt − β̂(q)′Yt(q),

where Xt(p) = (Xt−1, ..., Xt−p)′, Yt(p) = (Yt−1, ..., Yt−q)′, α̂(p) and β̂(q)
are the ordinary least squares estimators for the truncated autoregressions
(cf. Berk, 1974).

Define the pairwise joint empirical characteristic function of (ût, v̂t−j)

ϕ̂j(x, y) =
{

(n− j)−1
∑n

t=1+j ei(xût+yv̂t−j) (j ≥ 0),
(n + j)−1

∑n
t=1−j ei(xût+j+yv̂t) (j < 0),

where i =
√
−1 and (x, y) ∈ R2. We consider the integrated measure

Î(m,l)
n (j) =

∫ ∣∣∣ϕ̂(m,l)
j (x, y)− ϕ̂

(m,0)
j (x, 0)ϕ̂(0,l)

j (0, y)
∣∣∣2 w1(x)w2(y)dxdy,

where and hereafter the unspecified integral is taken over the entire Eu-
clidean space (R2 here),

ϕ̂
(m,l)
j (x, y) = ∂m+lϕ̂j(x, y)/∂xm∂yl,

m, l are nonnegative integers, and w1, w2 are weighting functions satisfying:

Assumption A.2: For j = 1, 2, wj : R → R+ is symmetric with
∫

x2wj(x)dx <
∞.

The introduction of w1(x) and w2(y) ensures existence of Î
(m,l)
n (j) be-

cause ϕ̂j(·, ·) is almost periodic (i.e. reaching the supremum value infinitely
often as (x, y) tends to infinity). With proper choices of w1, w2, Î

(0,0)
n (j)

converges to zero in probability as n → ∞ if and only if ut and vt−j are
independent. Thus, Î

(0,0)
n (j) is able to detect alternatives with zero cross-

correlation. On the other hand, various choices of m, l > 0 will yield tests
for cross-correlation in the (m, l)-moment between two time series; this
directs the power of the test toward certain directions of interest.

Put ϕ̂u(x) ≡ ϕ̂0(x, 0) and ϕ̂v(y) ≡ ϕ̂0(0, y), the empirical marginal char-
acteristic functions of (ût) and (v̂t). Let M be a positive integer such that
M → ∞,M/n → 0. Our test statistic is a weighted sum of the Î

(m,l)
n (j),
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namely,

Cn(m, l) =

∑n−1
j=1−n k2(j/M){(n− |j|)Î(m,l)

n (j)− Ĉ
(m,l)
o }{

2D̂
(m,l)
o

∑n−2
j=2−n k4(j/M)

} 1
2

,

where

Ĉ(m,l)
o =

∫
{ϕ̂(2m)

u (0)− |ϕ̂(m)
u (x)|2}w1(x)dx

∫
{ϕ̂(2l)

v (0)− |ϕ̂(l)
v (y)|2}w2(y)dy,

D̂(m,l)
o =

∫ ∫ ∣∣∣ϕ̂(2m)
u (x + x′)− ϕ̂(m)

u (x)ϕ̂(m)
u (x′)

∣∣∣2 w1(x)w1(x′)dxdx′

×
∫ ∫ ∣∣∣ϕ̂(2l)

v (y + y′)− ϕ̂(l)
v (y)ϕ̂(l)

v (y′)
∣∣∣2 w2(y)w2(y′)dydy′,

and the kernel function k of lag j satisfies:

Assumption A.3: k : R → [−1, 1] is symmetric, and continuous at 0 and all
except for a finite number of points, with k(0) = 1,

∫∞
−∞ k2(z) < ∞, and

|k(z)| ≤ ∆|z|−b as z →∞ for some 0 < ∆ < ∞ and b > 1
2 .

This includes the truncated, Bartlett, Daniell, Parzen, Turkey, and
Quadratic-Spectral kernels. Cf. Priestley (1981). The truncated, Bartlett,
Parzen and Turkey kernels are of compact support, because k(z) = 0 if
|z| > 1. Here, only the Î

(m,l)
n (j) for |j| ≤ M are used. In contrast, the

Daniell and Quadratic-Spectral kernels are of unbounded support. For
these kernels, all (2n−1) Î

(m,l)
n (j) are used. Typically, k gives large weights

to small j and small weights to large j. This is expected to give good power
against alternatives in which the strength of cross-dependence between Xt

and Yt−j decays to zero as the lag increases, as is typically the case for
most stationary time series encountered in practice.

We now consider test statistics corresponding to various choices of (m, l).

Case 1 ((m, l) = (0, 0)) : Testing pairwise cross-dependence.

Let w1(·) = w2(·) = w(·), where w : R → R+ satisfies Assumption A.2.
Then

Cn(0, 0) =

∑n−1
j=1−n k2(j/M){(n− |j|)Î(0,0)

n (j)− Ĉ
(0,0)
o }{

2D̂
(0,0)
o

∑n−2
j=2−n k4(j/M)

} 1
2

,
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where

Ĉ(0,0)
o =

∫
{1− |ϕ̂u(x)|2}w(x)dr

∫
{1− |ϕ̂v(y)|2}w(y)dy

D̂(0,0)
o =

∫ ∫
|ϕ̂u(x + x′)− ϕ̂u(x)ϕ̂u(x′)|2 w(x)w(x′)dxdx′

×
∫ ∫

|ϕ̂v(y + y′)− ϕ̂v(y)ϕ̂v(y′)|2 w(y)w(y′)dydy′.

This is consistent for hypotheses

Ho : ut and vt−j are independent for all j versus
HA : ut and vt−j are dependent for some j.

Here, HA characterizes all pairwise cross-dependencies. There exist alter-
natives in which (ut) and (vt) are pairwise independent but not mutually
independent. The test Cn(0, 0) will miss them. As Feller (1957, p.117)
points out, however, practical examples of pairwise independent events
that are not mutually independent apparently do not exist.

Case 2 ((m, l) = (1, 1)) : Testing cross-correlation in mean.

Let w1(·) = w2(·) = δ(·), the Dirac delta function. Then Î
(1,1)
n (j) =

R̂2
uv(j), where R̂uv(j) is the residual covariance function, namely,

R̂uv(j) =
{

(n− j)−1
∑n

t=1+j{ût − ū(j)}{v̂t−j − v̄(j)}, (j ≥ 0),
(n + j)−1

∑n
t=1−j{ût+j − ū(j)}{v̂t − v̄(j)}, (j < 0),

with

ū(j) =
{

(n− j)−1
∑n

t=1+j ût, (j ≥ 0),
(n + j)−1

∑n
t=1−j ût+j , (j < 0),

and v̄(j) similarly defined. It turns out that the test statistic

Cn(1, 1) =

∑n−1
j=1−n k2(j/M)(n− |j|)ρ̂2

uv(j)−
∑n−1

j=1−n k2(j/M){
2

∑n−2
j=2−n k4(j/M)

} 1
2

,

where ρ̂uv(j) is the sample cross-correlation function between (ût) and (v̂t),
that is,

ρ̂uv(j) = R̂uv(j)/{R̂uu(0)R̂vv(0)} 1
2 ,
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with R̂uu(0) = n−1
∑n

t=1{ût− ū(0)}2 and R̂vv(0) = n−1
∑n

t=1{v̂t− v̄(0)}2.
This is a modified version of Hong’s (1996) test, in the similar spirit of Ljung
& Box’s (1978) test being a modified version of Box & Pierce (1970). It is
consistent for hypotheses

Ho : ρuv(j) = 0 for all j versus HA : ρuv(j) 6= 0 for some j,

where ρuv(j) is the cross-correlation function between (ut) and (vt).

Case 3 ((m, l) = (2, 2)) : Testing cross-correlation in variance.

Let w1(·) = w2(·) = δ(·), the Dirac delta function. Then

Cn(2, 2) =

∑n−1
j=1−n k2(j/M)(n− |j|)ρ̂2

u2v2(j)−
∑n−1

j=1−n k2(j/M){
2

∑n−2
j=2−n k4(j/M)

} 1
2

,

where ρ̂u2v2(j) is the sample cross-correlation function between (û2
t ) and

(v̂2
t ), defined analogously as ρ̂uv(j) with ût and v̂t replaced by û2

t and v̂2
t

respectively. This test is consistent for hypotheses

Ho : ρu2v2(j) = 0 for all j versus HA : ρu2v2(j) 6= 0 for some j,

where ρu2v2(j) is the cross-correlation function between (u2
t ) and (v2

t ).
Thus, it is able to detect alternatives that exhibit zero cross-correlation
in mean but have non-zero cross-correlation in variance, as occurs in some
economic and high frequency financial time series. This test is similar in
spirit to those of Granger & Anderson (1978) and McLeod & Li (1983) in
testing autocorrelation in the second moment of a univariate time series.
In fact, it is closely linked to the test for Granger-causality in variance
recently developed in Hong (2001).

Other tests can be obtained by choosing proper (m, l). For example,
(m, l) = (2, 1) with w1(·) and w2(·) being the Dirac delta function yields a
test for cross-correlation between (ut) and (v2

t ). This can be used to test
the causal relationship between (e.g.) the trading volume of a stock and
its price volatility.

3. ASYMPTOTIC NULL DISTRIBUTION

To derive the null limit distribution, we impose an additional assumption.

Assumption A.4: E(u4d
t ) < ∞ and E(v4d

t ) < ∞, where d = max(m, l).
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Among other things, this ensures that ϕu(·) and ϕv(·) are 4d-th order
continuously differentiable (cf. Chung, 1974, Theorem 6.4.1). If m, l ≤ 1,
this assumption is reductant given Assumption A.1.

Theorem 3.1 (Asymptotic Normality). Suppose that Assumptions A.1
- A.4 hold. Define Bu(p) =

∑∞
j=p+1 j

1
2 |αj | and Bv(q) =

∑∞
j=q+1 j

1
2 |βj |.

Let M →∞,M/n → 0, and let p + q = o(n
1
4 /M

1
4 ), n

1
2 {Bu(p) + Bv(q)} =

o(n
1
4 /M

1
4 ). If (ut) and (vt) are mutually independent, then for each pair

(m, l), m, l ≥ 0, we have Cn(m, l) → N(0, 1) in distribution as n →∞.

The conditions on p, q are stronger than those of Hong (1996), because
we consider a more general statistic here. For the implications of condi-
tions on M,p, q, see an analogous discussion of Hong (1996). Although
(n − |j|)Î(m,l)

n (j) is a Cramer von-Mises type statistic and therefore does
not follow a standard chi-square distribution in general, Theorem 1 shows
that a weighted sum of the (n− |j|)Î(m,l)

n (j) has a null asymptotic N(0, 1)
distribution for large M. This yields a simple procedure because no tab-
ulation is needed. Our test is one-sided since negative values of Cn(m, l)
can occur only under the alternative (see Theorem 2 below). We note that
Csorgo (1985), de Silva & Griffiths (1980), and Feuerverger (1988), who
used empirical characteristic functions to test independence between two
independent and identically distributed random variables, only consider a
single or finitely many gridpoints. In contrast, we consider infinite points
by integrating out the nuisance parameters (x, y). This ensures consistency
of Cn(0, 0) against all pairwise cross-dependencies.

4. CONSISTENCY

To establish consistency of our test Cn(m, l), we first describe the de-
pendence between (ut) and (vt).

Assumption A.5: The bivariate process (ut, vt) is a stationary mixing se-
quence with (a) either a uniform mixing coefficient φ(j) of size 2 or a
strong mixing coefficient α(j) of size η/(2 + 2η) for some η > 0; (b)
E|ut|4d(1+η) < ∞ and E|vt|d(2+2η) < ∞, where d = max(m, l).

For mixing conditions and related concepts, see e.g. White (1984). As-
sumption A.5(a) ensures φ(j) → 0 or α(j) → 0 as j → ∞, implying
ergodicity. Assumption A.5(b) is stronger than Assumption A.4. Among
other things, this ensures that the partial derivative of pairwise joint char-
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acteristic function ϕj(x, y) of (ut, vt−j)

ϕ
(m,l)
j (x, y) =

∂m+l

∂xm∂yl
ϕj(x, y)

exists, is bounded and continuous in (x, y) ∈ R2.

Theorem 4.1 (Consistency). Suppose that Assumptions A.1-A.3 and
A.5 hold. Let M → ∞,M/n → 0, and let p + q = o(n

1
2 /M

1
4 ), Bu(p) +

Bv(q) = o(M− 1
4 ), where Bu(p) and Bv(q) are as in Theorem 1. Then as

n →∞, it

(M
1
2 /n)Cn(m, l) →

∞∑
|j|=0

I(m,l)(j)/
{

2D(m,l)
o

∫ ∞

−∞
k4(z)dz

} 1
2

in probability, where D
(m,l)
o = p limn→∞ D̂

(m,l)
o , and

I(m,l)(j) =
∫ ∫

|ϕ(m,l)
j (x, y)− ϕ

(m,l)
j (x, 0)ϕ(m,l)

j (0, y)|2w1(x)w2(y)dxdy.

Thus, limn→∞ P{Cn(m, l) > cn} = 1 for any nonstochastic sequence {cn =
o(n/M

1
2 )}.

We note that the asymptotic local and global powers of Cn(m, l) can be
analyzed using reasoning analogous to those of Hong (1996, Sections 4 &
5). In particular, non-uniform kernels have substantially better power than
the truncated kernel or uniform weighting. Over a suitable class of kernel
functions, the Daniell kernel, k(z) = sin(πz)/πz for z ∈ (−∞,∞), maxi-
mizes the power of the test under both proper local and global alternatives.
However, simulation results in Hong (1996) show that some commonly used
non-uniform kernels have similar powers.

5. MONTE CARLO EVIDENCE

We now examine finite sample performance of Cn(0, 0) in comparison
with those of Haugh (1976), Hong (1996) and Koch & Yang (1986), using
Monte Carlo methods. Following Hong (1996), we consider two processes
for Xt and Yt : (a) Xt = 0.5Xt−1 + ut and Yt = 0.5Yt−1 + vt; (b) Xt =
ut + 0.5ut−1 and Yt = vt + 0.5vt−1, where ut and vt are independent and
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identically distributed random variables. Three alternatives are considered:

Alternative 1 : ρuv(j) =
{

0.3, j = 0,
0, otherwise;

Alternative 2 : ρuv(j) =
{

0.64j/(
∑8

j=0 0.64j), 0 ≤ j ≤ 8,

0, otherwise.
Alternative 3 : ut = ε1tε2t, vt = ε2tε3t,

where the εjt are mutually independent i.i.d. innovations. Under Alterna-
tive 1, (ut) and (vt) are correlated simultaneously but not otherwise. This
pattern of very short cross-correlation is similar to those of many financial
time series. Under Alternative 2, the cross-correlation function is positive
and decreasing over 0 ≤ j ≤ 8, with a maximum value of 0.233 at j = 0
and nearly 0 at j = 8. Similar patterns can be observed in some economic
time series data. Under Alternative 3, (ut) and (vt) are uncorrelated but
are not mutually independent.

The simulation experiment was carried out using a GAUSS random num-
ber generator on a personal computer. We consider the sample size of
n = 100. To reduce the effects of initial values, we generate 150 obser-
vations and then discard the first 50. We use truncated autoregression
models of order p and q to fit Xt and Yt, with p, q = 3. For Cn(0, 0), we
use the Bartlett kernel: k(z) = 1 − |z| for |z| ≤ 1 and k(z) = 0 otherwise.
This non-uniform kernel has a compact support, thus significantly reducing
the computational cost involved. Three rates of M = 5, 8, 12 are used to
examine effects of choosing different M . These parameters also apply to
Hong’s (1996) test

Q =

n

n−1∑
j=1−n

k2(j/M)σ̂2
uv(j)− Sn(k)

 / {2Dn(k)}
1
2 ,

where σ̂uv(j) is the residual cross-correlation function defined as ρ̂uv(j) but
without substracting the sample means, Sn(k) =

∑n−1
j=1−n(1−|j|/n)k2(j/M)

and Dn(k) =
∑n−2

j=2−n(1−|j|/n){1− (|j|+1)/n}k4(j/M). For comparison,
we include Cn(1, 1), the modified version of Q.

Haugh’s (1976) two statistics are

S = n

M∑
j=−M

σ̂2
uv(j), S∗ = n2

M∑
j=−M

(n− j)−1σ̂2
uv(j).
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TABLE 1.

Rejection Rates Under the Null Hypothesis of Independence Between Xt and Yt

N(0, 1) EXP

M 5 8 12 5 8 12

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Cn(0, 0) 11.6 6.7 10.9 6.6 10.7 6.4 11.1 7.3 12.3 7.4 12.4 7.0

Cn(1, 1) 11.3 7.1 10.1 6.0 9.8 5.7 10.1 7.1 10.6 7.1 10.7 7.3

Q 10.8 6.8 9.7 5.8 8.4 5.3 9.7 7.2 10.7 6.7 10.1 6.5

S 7.8 3.6 6.5 2.2 3.9 1.1 8.7 4.2 7.1 3.4 7.1 3.8

S∗ 8.7 4.5 7.8 3.3 7.7 3.2 10.2 4.9 9.1 4.5 10.3 6.1

r∗1 8.6 3.2 6.8 2.1 5.0 2.1 10.1 4.0 7.8 3.8 6.6 3.5

r∗M−1 7.2 4.0 7.2 3.2 6.8 2.5 9.0 3.9 8.9 3.9 7.1 3.2

Notes:
(1) Xt = 0.5Xt−1 + ut, Yt = 0.5Yt−1 + vt, where ut and vt are N(0, 1) or Expo-
nential (0,1);
(2) 1000 Replications;
(3) Q, Hong’s (1996) test; S, S∗, Haugh’s (1976) tests; r∗1 , r∗M−1, Koch & Yang’s

(1986) tests.

Both S and S∗ are asymptotically χ2
2M+1 under the null hypothesis. Koch

& Yang’s (1986) statistic is

r∗i = n
M−i∑

j=−M

{
i∑

l=0

σ̂uv(j + l)

}2

, i = 0, 1, ...,M − 1.

Note r∗0 = S. For i ≥ 1, r∗i is asymptotically distributed as an infinite sum
of chi-square random variables, with weights being the eigenvalues of some
known matrix Ai. Koch & Yang (1986) use Satterthwaite’s (1941,1946)
χ2 approximation: β−1

i r∗i ∼ χ2
vi

, where βi = tr(AiA
′
i)/tr(Ai) and vi =

tr(Ai)2/tr(AiA
′
i). Koch & Yang (1986) give formula for βi and vi. An

important issue with r∗i is the choice of i given each M. As Koch & Yang
(1986) point out, if there is no prior information about the alternative,
then various choices of i = 1, ...,M − 1 should be considered for each M.
For brevity, we consider i = 1 and M − 1 only.

Because the performances of each test are much the same whether Xt

and Yt follow process (a) or (b), we only report results when Xt and Yt

follow process (a). Table 1 reports size performances of all the tests at the
10% and 5% nominal significance levels, based on 1000 replications. Both
Cn(0, 0) and Cn(1, 1) have reasonable sizes at the 10% level; they show a
little overrejection at the 5% level, especially for exponential innovations.
Both Cn(1, 1) and Q have similar sizes. The tests S, S∗, r∗1 and r∗M−1 all
show underrejection at both the 10% and 5% levels in most cases. The S∗

test has better size than S.
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TABLE 2.

Rejection Rates Under Alternative 1

N(0, 1) EXP

M 5 8 12 5 8 12

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Cn(0, 0) 58.6 53.2 50.2 41.8 40.6 37.8 74.0 72.0 69.8 65.6 63.0 57.8

Cn(1, 1) 80.8 78.8 75.8 74.2 71.0 69.8 74.8 71.0 69.2 64.6 63.4 60.8

Q 80.8 78.0 75.4 74.2 71.2 70.6 74.6 72.0 69.8 67.4 65.0 61.2

S 41.6 49.8 30.2 41.6 20.6 35.4 42.8 45.8 30.8 38.8 20.6 25.4

S∗ 43.6 48.8 33.0 39.6 26.4 32.8 44.2 44.4 34.4 35.4 26.8 22.4

r∗1 33.2 38.4 26.0 35.0 17.0 31.0 35.0 37.8 27.0 31.8 19.0 23.4

r∗M−1 27.4 34.8 16.6 25.8 10.8 17.6 29.8 30.8 17.4 22.6 10.4 17.4

Notes:
(1) Xt = 0.5Xt−1 + ut, Yt = 0.5Yt−1 + vt, where ut and vt are N(0, 1) or Exponential
(0,1), ρuv(j) = 0.3 for j = 0 and ρuv(j) = 0 for j 6= 0;
(2) 1000 Replications;
(3) Q, Hong’s (1996) test; S, S∗, Haugh’s (1976) tests; r∗1 , r∗M−1, Koch & Yang’s (1986)
tests.

Table 2 reports powers under Alternative 1 at the 5% level, based on
500 replications. We use both asymptotic and empirical critical values,
the latter obtained from the 1000 replications under the null hypothesis.
The subsequent discussions are based on results using the empirical critical
values (i.e. size-corrected powers). We first consider normal innovations.
Both Q and Cn(1, 1) have virtually the same power and are most pow-
erful, followed by, in their orders, Cn(0, 0), S, S∗, r∗1 and r∗M−1. We note
that Cn(0, 0) becomes more powerful under exponential errors than under
normal errors, while all the cross-correlation tests becomes less powerful.
For exponential errors, Q remains most powerful, and Cn(1, 1) has similar
powers. Now, Cn(0, 0) has the same power as Q for M = 5, and is only
slightly less powerful than Q for M = 8, 12. The Q, Cn(1, 1) and Cn(0, 0)
tests have substantially better powers than the S, S∗, r∗1 and r∗M−1 tests.
The r∗M−1 test remains the least powerful.

Table 3 reports powers under Alternative 2. Under normal errors, r∗M−1 is
most powerful for M = 5, 8, but becomes less powerful than Q and Cn(1, 1)
for M = 12. The Q test is slightly more powerful than Cn(1, 1), followed by
γ∗1 , S, S∗ and Cn(0, 0). The Cn(0, 0) test is least powerful. Again, Cn(0, 0)
becomes more powerful under exponential errors than under normal errors;
the cross-correlation tests have a mixed story, but their powers change only
slightly. Under exponential errors, r∗M−1 remains most powerful for M = 5,
is as powerful as Q for M = 8, and becomes less powerful than Q and
Cn(1, 1) for M = 12. The Q test is slightly more powerful than Cn(1, 1),
which in turn has better powers than r∗1 , S, S∗ and Cn(0, 0). Now, Cn(0, 0)
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TABLE 3.

Rejection Rates Under Alternative 2

N(0, 1) EXP

M 5 8 12 5 8 12

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Cn(0, 0) 40.6 37.4 37.8 30.8 33.0 29.2 53.2 46.4 46.4 42.6 43.8 39.0

Cn(1, 1) 70.0 65.6 64.6 62.4 57.4 55.0 70.6 66.0 66.6 61.2 62.8 56.0

Q 71.8 69.8 66.8 64.2 60.6 59.8 73.4 68.6 69.6 66.0 64.6 58.8

S 36.6 44.0 25.6 38.4 18.0 32.6 42.2 47.4 32.0 39.4 23.2 28.0

S∗ 39.0 41.6 31.8 36.8 24.0 31.0 44.6 44.8 35.8 36.6 30.0 25.2

r∗1 55.6 62.2 43.4 53.8 32.0 45.8 59.6 61.6 47.6 51.8 35.6 41.2

r∗M−1 67.8 75.4 58.4 69.0 40.0 52.8 70.2 72.6 61.4 66.0 42.6 51.8

Notes:
(1) Xt = 0.5Xt−1 + ut, Yt = 0.5Yt−1 + vt, where ut and vt are N(0, 1) or Exponential
(0,1), ρuv(j) = 0.233 ∗ 0.82j for 0 ≤ j ≤ 8 and ρuv(j) = 0 otherwise ;
(2) 1000 Replications;
(3) Q, Hong’s (1996) test; S, S∗, Haugh’s (1976) tests; r∗1 , r∗M−1, Koch & Yang’s (1986)
tests.

TABLE 4.

Rejection Rates Under Alternative 3

N(0, 1) EXP

M 5 8 12 5 8 12

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Cn(0, 0) 70.4 65.6 67.2 57.4 54.0 49.8 67.8 60.6 59.6 54.6 52.8 46.6

Cn(1, 1) 21.4 20.4 19.6 17.8 16.2 14.8 31.0 26.2 29.2 25.0 25.8 22.8

Q 21.8 20.4 19.4 17.4 15.4 15.0 30.6 27.0 28.6 26.4 25.4 22.6

S 8.6 10.4 6.8 9.2 4.0 9.8 16.6 18.6 14.0 16.8 13.0 15.0

S∗ 9.4 10.4 8.0 9.0 6.6 9.6 18.0 18.4 15.0 16.6 16.4 14.6

r∗1 8.6 12.0 6.4 9.0 4.8 10.0 14.8 16.0 13.6 14.8 10.6 12.8

r∗M−1 9.6 12.2 5.8 8.4 4.8 8.0 14.2 15.2 10.0 11.6 6.8 9.0

Notes:
(1) Xt = 0.5Xt−1 + ut, Yt = 0.5Yt−1 + vt, where ut = ε1tε3t, and vt = ε2tε3t, ε1t, ε2t

and ε3t are serially and mutually independent N(0, 1) or Exponential (0,1);
(2) 1000 Replications;
(3) Q, Hong’s (1996) test; S, S∗, Haugh’s (1976) tests; r∗1 , r∗M−1, Koch & Yang’s (1986)
tests.

remains least powerful for M = 5, but becomes more powerful than S and
S∗ for M = 8, 12.

Table 4 reports powers under Alternative 3. As expected, Cn(0, 0) is
able to detect the nonlinear dependence, while all the cross-correlation
tests have little or no powers.
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In summary, the simulation study shows that the new test Cn(0, 0) has
reasonable sizes and has good powers against nonlinear dependence which
the cross-correlation tests will fail to detect. It also has good power against
linear dependencies, especially in non-Gaussian situations.

MATHEMATICAL APPENDIX

Throughout, 0 < ∆ < ∞ denotes a generic constant that may differ in
different places; a∗ and Re(a) denote the complex conjugate and the real
part of a; ||A|| = {tr(AA′)} 1

2 denotes the Euclidean norm of a real-valued
vector or matrix A; “→p ” and “→d ” denote convergence in probability
and in distribution. Theorems 1 and 2 are proved in Appendix A; Appendix
B contains some lemmas used in Appendix A.

APPENDIX A

PROOF OF THEOREM 1: The proof of Theorem 1 consists of proving
Theorems A.1-A.4 below, and application of Slutsky Theorem.

Theorem A.1. Let Ĩ
(m,l)
n (j) be defined as Î

(m,l)
n (j) with (ût, v̂t) replaced

with (ut, vt). Then

M− 1
2

n−1∑
|j|=0

k2(j/M)(n− |j|)
{

Î(m,l)
n (j)− Ĩ(m,l)

n (j)
}

= oP (1).

Theorem A.2. Define γ̃
(m,l)
n (j) =

∫
|γ̃(m,l)

j (x, y)|2w1(x)w2(y)dxdy, where

γ̃
(m,l)
j (x, y) =

{
(n− j)−1

∑n
t=1+j h

(m)
t (x)g(l)

t−j(y), (j ≥ 0),
(n + j)−1

∑n
t=1−j h

(m)
t+j (x)g(l)

t (y), (j < 0),

h
(m)
t (x) = ∂m

∂xm eixut − ϕ
(m)
u (x) and g

(l)
t (y) = ∂l

∂yl e
iyvt − ϕ

(l)
v (y). Then

M− 1
2

n−1∑
|j|=0

k2(j/M)(n− |j|)
{

Ĩ(m,l)
n (j)− γ̃(m,l)

n (j)
}

= oP (1).
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Theorem A.3. Let C
(m,l)
o and D

(m,l)
o be defined as Ĉ

(m,l)
o and D̂

(m,l)
o

with ϕ̂u and ϕ̂v replaced with ϕu and ϕv respectively. Then

∑n−1
|j|=0 k2(j/M)

{
(n− |j|)γ̃(m,l)

n (j)− C
(m,l)
o

}
{

2D
(m,l)
o

∑n−2
|j|=0 k4(j/M)

} 1
2

→d N(0, 1).

Theorem A.4. Ĉ
(m,l)
o − C

(m,l)
o = oP (M− 1

2 ), and D̂
(m,l)
o − D

(m,l)
o =

oP (1).

PROOF OF THEOREM A.1: Write

|Î(m,l)
j (x, y)|2 − |Ĩ(m,l)

j (x, y)|2

=|Î(m,l)
j (x, y)− Ĩ

(m,l)
j (x, y)|2

+2Re[{Î(m,l)
j (x, y)− Ĩ

(m,l)
j (x, y)}Ĩ(m,l)

j (x, y)∗]. (A1)

We now consider the first term. Put ĥt(x) = eixût − ϕu(x), ĝt(y) = eiyv̂t −
ϕv(y). Then by straightforward algebra, we have that for j ≥ 0,

Î
(m,l)
j (x, y) =(n− j)−1

n∑
t=1+j

ĥ
(m)
t (x)ĝ(l)

t−j(y)

−

(n− j)−1
n∑

t=1+j

ĥ
(m)
t (x)


(n− j)−1

n∑
t=1+j

ĝ
(l)
t−j(y)

 ,

(A2)

Ĩj(x, y) =(n− j)−1
n∑

t=1+j

h
(m)
t (x)g(l)

t−j(y)

−

(n− j)−1
n∑

t=1+j

h
(m)
t (x)


(n− j)−1

n∑
t=1+j

g
(l)
t−j(y)

 , (A3)
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where h
(m)
t (x) and g

(l)
t (y) are as in Theorem A.2. Put ∆ĥt(x) = ĥt(x) −

ht(x) and ∆ĝt(y) = ĝt(y)− gt(y). Then for j ≥ 0,

Î
(m,l)
j (x, y)− Ĩ

(m,l)
j (x, y)

=(n− j)−1
n∑

t=1+j

∆ĥ
(m)
t (x)∆ĝ

(l)
t−j(y)

+ (n− j)−1
n∑

t=1+j

∆ĥ
(m)
t (x)g(l)

t−j(y)

+ (n− j)−1
n∑

t=1+j

h
(m)
t (x)∆ĝ

(l)
t−j(y)

−

(n− j)−1
n∑

t=1+j

∆ĥ
(m)
t (x)


(n− j)−1

n∑
t=1+j

∆ĝ
(l)
t−j(x)


−

(n− j)−1
n∑

t=1+j

∆ĥ
(m)
t (x)


(n− j)−1

n∑
t=1+j

g
(l)
t−j(x)


−

(n− j)−1
n∑

t=1+j

h
(m)
t (x)


(n− j)−1

n∑
t=1+j

∆ĝ
(l)
t−j(x)


=

3∑
c=1

Âcnj(x, y)−
6∑

c=4

Âcnj(x, y), say.

We can obtain a similar expression for j < 0. Hence, we have

∣∣∣Î(m,l)
j (x, y)− Ĩ

(m,l)
j (x, y)

∣∣∣2 ≤ ∆
6∑

c=1

∣∣∣Âcnj(x, y)
∣∣∣2 . (A4)
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We first consider Â1nj(x, y). Put dn(j) = k2(j/M)(1 − |j|/n)−1. By the
Cauchy-Swartz inequality, we have

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫ ∣∣∣Â1nj(x, y)

∣∣∣2 w1(x)w2(y)dxdy

≤

n−1
n−1∑
|j|=0

dn(j)


{

n∑
t=1

∫ ∣∣∣∆ĥ
(m)
t (x)

∣∣∣2 w1(x)dx

}

×

{
n∑

t=1

∫ ∣∣∣∆ĝ
(l)
t (y)

∣∣∣2 w2(y)dy

}
=OP

{
(M/n)(p2 + nB2

u(p))(q2 + nB2
v(q))

}
(A5)

by Lemmas B.1-B.2 in Appendix B.
Next, we consider Â2nj(x, y). Conditional on (ut)n

t=1 and noting that
{g(l)

t (y)} is an independent and identically distributed sequence with mean
zero and E|g(l)

t (y)|2 ≤ ∆ given Assumption A.4, we have

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫

E

{∣∣∣Â2nj(x, y)
∣∣∣2 |(ut)n

t=1

}
w1(x)dxw2(y)dy

= n−1
n−1∑
|j|=0

dn(j)
n∑

t=j+1

∫
|∆ĥ

(m)
t (x)|2w1(x)dx

∫
E|g(l)

t−j(y)|2w2(y)dy

≤ ∆

n−1
n−1∑
|j|=0

dn(j)


{

n∑
t=1

∫
|∆ĥ

(m)
t (x)|2w1(x)dx

}
= OP {(M/n)(p2 + B2

u(p)}

by Lemmas B.1-B.2. It follows that

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫ ∣∣∣Â2nj(x, y)

∣∣∣2 w1(x)w2(y)dxdy

=OP {(M/n)(p2 + pB2
u(p))}. (A6)

Similarly, we have

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫ ∣∣∣Â3nj(x, y)

∣∣∣2 w1(x)w2(y)dxdy

=OP {(M/n)(q2 + nB2
v(q)}. (A7)
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We now turn to Â4nj(x, y). By the Cauchy-Schwarz inequality, we have

|Â4nj(x, y)|2 =

∣∣∣∣∣∣(n− j)−1
n∑

t=j+1

∆ĥ
(m)
t (x)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣(n− j)−1

n∑
t=j+1

∆ĝ
(l)
t−j(y)

∣∣∣∣∣∣
2

≤ (n− j)−2

{
n∑

t=1

|∆ĥ
(m)
t (x)|2

}{
n∑

t=1

|∆ĝ
(l)
t (x)|2

}
,

it follows that

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫
|Â4nj(x, y)|2w1(x)w2(y)dxdy

≤

n−1
n−1∑
|j|=0

dn(j)


{

n∑
t=1

∫
|∆ĥ

(m)
t (x)|2w1(x)dx

}

×


n∑

t=j+1

∫
|∆ĝ

(l)
t (y)|2w2(y)dy


=OP

{
(M/n)(p2 + nB2

u(p))(q2 + nB2
v(q))

}
(A8)

by Lemmas B.1-B.2. Similarly,

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫
|Â5nj(x, y)|2w1(x)w2(y)dxdy

=OP {(M/n)(p2 + nB2
u(p))}, (A9)

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫
|Â6nj(x, y)|2w1(x)w2(y)dxdy

=OP {(M/n)(q2 + nB2
v(q))}. (A10)

Combining (A4)-(A10), we obtain

n−1∑
|j|=0

k2(j/M)(n− |j|)
∫ ∣∣∣Î(m,l)

j (x, y)− Ĩ
(m,l)
j (x, y)

∣∣∣2 w1(x)w2(y)dxdy

=OP

{
(M/n)(p2 + nB2

u(p))(q2 + nB2
v(q))

}
. (A11)

This term vanishes in probability given p + q = o(n
1
4 /M

1
4 ), n

1
2 {Bu(p) +

Bv(q)} = o(n
1
4 /M

1
4 ).
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Next, by the Cauchy-Schwarz inequality, we have
n−1∑
|j|=0

k2(
j

M
)(n− |j|)

∫ ∣∣∣{Î(m,l)
j (x, y)− Ĩ

(m,l)
j (x, y)}Ĩ(m,l)

j (x, y)∗
∣∣∣ w1(x)w2(y)dxdy

≤


n−1∑
|j|=0

k2(
j

M
)(n− |j|)

∫ ∣∣∣Î(m,l)
j (x, y)− Ĩ

(m,l)
j (x, y)

∣∣∣2 w1(x)w2(y)dxdy


1
2

×


n−1∑
|j|=0

k2(
j

M
)(n− |j|)Ĩ(m,l)(j)


1
2

=oP (M
1
2 ) (A12)

by (A11) and
∑n−1

|j|=0 k2(j/M)(n−|j|)Ĩ(m,l)
n (j) = OP (M), where the latter

follows by Markov’s inequality. Therefore, we have M− 1
2

∑n−1
|j|=0 k2(j/M)(n−

|j|){Î(m,l)
n (j) − Ĩ

(m,l)
n (j)} = oP (1) from (A1) and (A11)-(A12). This com-

pletes the proof.

PROOF OF THEOREM A.2: Write

|Ĩ(m,l)
j (x, y)|2 − |γ̃(m,l)

j (x, y)|2

=|Ĩ(m,l)
j (x, y)-γ̃(m,l)

j (x, y)|2+2Re[{Ĩ(m,l)
j (x, y)-γ̃(m,l)

j (x, y)}γ̃(m,l)
j (x, y)∗],

(A13)

By the Cauchy-Schwarz inequality and (A3), we have that for j ≥ 0,

E
∣∣∣Ĩ(m,l)

j (x, y)− γ̃
(m,l)
j (x, y)

∣∣∣2
≤

E

∣∣∣∣∣∣(n− j)−1
n∑

t=1+j

h
(m)
t (x)

∣∣∣∣∣∣
4

E

∣∣∣∣∣∣(n− j)−1
n∑

t=1+j

g
(l)
t−j(y)

∣∣∣∣∣∣
4


1
2

≤ ∆(n− j)−2

given that {h(m)
t (x)} and {g(l)

t (y)} are each an independent and identically
distributed sequence with fourth moments finite by Assumption A.4. A
similar result holds for j < 0. Also, by the Cauchy-Schwarz inequality,

E
∣∣∣{Ĩ(m,l)

j (x, y)− γ̃
(m,l)
j (x, y)}γ̃(m,l)

j (x, y)∗
∣∣∣

≤
{

E|Ĩ(m,l)
j (x, y)− γ̃

(m,l)
j (x, y)|2E|γ̃(m,l)

j (x, y)|2
} 1

2

≤ ∆(n− |j|)−3/2,
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where E|γ̃(m,l)
j (x, y)|2 ≤ ∆(n − |j|)−1 because γ̃

(m,l)
j (x, y) is a sum of an

martingale difference sequence with the second moment finite. It follows
that

n−1∑
|j|=0

k2(j/M)(n− |j|)E
∣∣∣Ĩ(m,l)

n (j)− γ̃(m,l)
n (j)

∣∣∣
≤ ∆(M/n

1
2 )

M−1
n−1∑
|j|=0

dn(j)


= o(M

1
2 )

by Lemma B.1 and M/n → 0. The desired result follows by Markov’s
inequality.

PROOF OF THEOREM A.3: Put

H
(m)
t,s =

∫
h

(m)
t (x)h(m)

s (x)∗w1(x)dx, G
(l)
t,s =

∫
g
(l)
t (y)g(l)

s (y)∗w2(y)dy.

(A14)
Recall γ̃

(m,l)
n (j) =

∫
|γ̃(m,l)

j (x, y)|2w1(x)w2(y)dxdy as in Theorem A.2, we
can write

(n− |j|)γ̃(m,l)
n (j)

=



n∑
t=1+j

H
(m)
t,t G

(l)
t−j,t−j

n−j +

2
n∑

t=2+j

t−1∑
s=1+j

Re(H(m)
t,s G

(l)
t−j,s−j)

n−j (j ≥ 0)
n∑

t=1−j

H
(m)
t+j,t+jG

(l)
t,t

n+j +

2

n∑
t=2−j

t−1∑
s=1−j

Re(H(m)
t+j,s+jG

(l)
t,s)

n+j (j < 0)

= C̄n(j) + S̄n(j), say.

It follows that

n−1∑
|j|=0

k2(j/M)(n− |j|)γ̃(m,l)
n (j) =

n−1∑
|j|=0

k2(j/M)C̄n(j) +
n−1∑
|j|=0

k2(j/M)S̄n(j).

(A15)
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Under the null hypothesis of independence between (ut) and (vt), C̄n(j) is
the sum of an independent and identically distributed sequence with

EC̄n(j) = E{H(m)
1,1 }E{G

(l)
1,1}

=
∫

E
∣∣∣h(m)

1 (x)
∣∣∣2 w1(x)dx

∫
E

∣∣∣g(l)
1 (y)

∣∣∣2 w2(y)dy

=
∫
{ϕ(2m)

u (0)− |ϕ(m)
u (x)|2}w1(x)dx

∫
{ϕ(2m)

v (0)− |ϕ(m)
v (y)|2}w2(y)dy

= C(m,l)
o .

Hence, we have, by the Cauchy-Schwarz inequality, that

E
{

C̄n(j)− C(m,l)
o

}2

≤ (n− |j|)−1E{H(m)
1,1 }2E{G

(l)
1,1}2

≤ (n− |j|)−1

{∫
[E|h(m)

1 (x)|4] 1
2 w1(x)dx

}2 {∫
[E|g(l)

1 (y)|4] 1
2 w2(y)dy

}2

≤ ∆(n− |j|)−1

given Assumption A.4. This implies

n−1∑
|j|=0

k2(j/M)E
∣∣∣C̄n(j)− C(m,l)

o

∣∣∣ ≤ n−1∑
|j|=0

k2(j/M)
[
E{C̄n(j)− C(m,l)

o }2
] 1

2

≤ ∆(M/n
1
2 )

M−1
n−1∑
|j|=0

dn(j)


= o(M

1
2 )

given Lemma B.1 and M/n → 0. It follows that

n−1∑
|j|=0

k2(j/M)C̄n(j) = C(m,l)
o

n−1∑
|j|=0

k2(j/M) + oP (M
1
2 ). (A16)
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Now, put S̄n =
∑n−1

|j|=0 k2(j/M)S̄n(j) and noting dn(j) = dn(−j), we
can write

S̄n =2n−1
n−1∑
j=1

dn(j)
n∑

t=2+j

t−1∑
s=1+j

Re(H(m)
t,s G

(l)
t−j,s−j)

+2n−1
1−n∑
j=0

dn(j)
n∑

t=2−j

t−1∑
s=1−j

Re(H(m)
t+j,s+jG

(l)
t,s)

=2n−1
n−1∑
j=1

dn(j)
n∑

t=2+j

t−1∑
s=1+j

Re(H(m)
t,s G

(l)
t−j,s−j)

+2n−1
n−1∑
j=0

dn(j)
n∑

t=2+j

t−1∑
s=1+j

Re(H(m)
t−j,s−jG

(l)
t,s)

=2n−1
n−1∑
t=3


t−1∑
s=2

s−1∑
j=1

dn(j)Re(H(m)
t,s G

(l)
t−j,s−j)


+2n−1

n−1∑
t=2


t−1∑
s=1

s−1∑
j=0

dn(j)Re(H(m)
t−j,s−jG

(l)
t,s)


=n−1

n−1∑
t=2

(S1nt + S2nt)

=S̄1n + S̄2n, say, (A17)

where we set S1n2 = 0. Given (A14) and independence between (ut) and
(vt), we have E(S1nt|Ft−1) = 0, E(S2nt|Ft−1) = 0 and E(S1ntS2nt|Ft−1) =
0, where {Ft} is the sequence of sigma-fields consisting of (us, vs), s ≤ t.
It follows that E(Snt|Ft−1) = 0, and so (Snt, Ft) is an adapted martingale
difference sequence. We can show asymptotic normality for S̄n by Brown’s
(1971) martingale limit theorem, which implies V (S̄n)−

1
2 S̄n →d N(0, 1) if

V (S̄n)−
1
2 n−2

n∑
t=2

E
[
S2

nt1
{
|Snt| > nεV (S̄n)

1
2

}]
→ 0 (A18)

for every constant ε > 0, and

V (S̄n)−
1
2 n−2

n∑
t=2

E(S2
nt|Ft−1) →p 1. (A19)
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Here, 1(·) is the indicator function. We verify (A18) by showing

V (S̄n)−2n−4
n∑

t=2

ES4
nt → 0.

From Lemma B.4 in Appendix B,

V (S̄n) = 2D(m,l)
o M

∫ ∞

−∞
k4(z)dz{1 + o(1)}

as M →∞,M/n → 0. Hence, it suffices to show

M−2n−4
n∑

t=2

E|S̃cnt|4 → 0

for c = 1, 2, where

S̃1nt = 2
t−1∑
s=2

s−1∑
j=1

dn(j)H(m)
t,s G

(l)
t−j,s−j , S̃2nt = 2

t−1∑
s=1

s−1∑
j=0

dn(j)H(m)
t−j,s−jG

(l)
t,s.

(A20)
We show for S̃1nt only; the proof for S̃2nt is the same. Rewrite

S̃1nt =2
∫

h
(m)
t (x)

t−1∑
s=2

h(m)
s (x)∗


s−1∑
j=1

dn(j)G(l)
t−j,s−j

 w1(x)dx

=2
∫

h
(m)
t (x)

t−1∑
s=2

h(m)
s (x)∗Z(l)

ts w1(x)dx, say. (A21)

Note that h
(m)
s (x) and Z

(l)
ts are independent, and given (t, s) where t > s,

Z
(l)
ts is a sum of an martingale difference sequence. Then by Minkowski’s
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inequality, we obtain

E
∣∣∣S̃1nt

∣∣∣4
≤ 16

∫ {
E|h(m)

t (x)|4
} 1

4

E

∣∣∣∣∣
t−1∑
s=2

h(m)
s (x)∗Z(l)

ts

∣∣∣∣∣
4


1
4

w1(x)dx


4

≤ 16

∫ {
E|h(m)

t (x)|4
} 1

4

{
t−1∑
s=2

{
E|h(m)

s (x)|4
} 1

2
{

E|Z(l)
ts |4

} 1
2

} 1
2

w1(x)dx

4

≤ 16t2M2

M−1
n−1∑
j=1

dn(j)


2 [∫ {

E|h(m)
1 (x)|4

} 1
4

w1(x)dx

]2

×
[{

E|g(l)
1 (y)|4

} 1
4

w2(y)dy

]2

= O(t2M2),

where, we have made use of the fact that

E|Z(l)
ts |4 ≤


s−1∑
j=1

dn(j)
(
E|G(l)

t−j,s−j |
4
) 1

2


2

≤ ∆M2

M−1
n−1∑
j=1

dn(j)


2

.

(A22)
It follows that

M−2n−4
n∑

t=2

E|S̃1nt|4 = O(n−1).

Similarly,

M−2n−4
n∑

t=2

E|S̃2nt|4 = O(n−1).

Hence, condition (A18) holds.
Next, we verify (A19) by showing

V (S̄n)−2V {n−2
n∑

t=2

E(S2
nt|Ft−1)} → 0.

Because E(S2
nt|Ft−1) = E(S2

1nt|Ft−1) + E(S2
2nt|Ft−1), it suffices to show

M−2V {n−2
n∑

t=2

E(S2
cnt|Ft−1)} → 0
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for c = 1, 2. We show for c = 1; the proof for c = 2 is the same. Given

S2
1nt =

2
t−1∑
s=2

s−1∑
j=1

dn(j)[H(m)
t,s G

(l)
t−j,s−j + H

(m)∗
t,s G

(l)∗
t−j,s−j ]


2

=

2
t−1∑
s=2

s−1∑
j=1

dn(j)H(m)
t,s G

(l)
t−j,s−j


2

+

2
t−1∑
s=2

s−1∑
j=1

dn(j)H(m)∗
t,s G

(l)∗
t−j,s−j


2

+ 2

∣∣∣∣∣∣2
t−1∑
s=2

s−1∑
j=1

dn(j)H(m)
t,s G

(l)
t−j,s−j

∣∣∣∣∣∣
2

=S̃2
1nt + (S̃∗1nt)

2 + 2|S̃1nt|2, (A23)

it suffices to show M−2V {n−2
∑n

t=2 E(S̃2
1nt|Ft−1)} → 0. Using (A21) and

putting Du(x, x′) ≡ Eh
(m)
t (x)h(m)

t (x′), we have

E(S̃2
1nt|Ft−1)

=E


2

t−1∑
s=2

s−1∑
j=1

dn(j)H(m)
t,s G

(l)
t−j,s−j


2

|Ft−1


=4

t−1∑
s=2

∫
Du(x, x′)h(m)

s (x)∗h(m)
s (x′)∗(Z(l)

ts )2w1(x)w1(x′)dxdx′

+ 8
t−1∑
s2=3

∫
Du(x, x′)h(m)

s2
(x)∗

s2−1∑
s1=2

h(m)
s1

(x′)∗Z(l)
ts2

Z
(l)
ts1

w1(x)w2(x′)dxdx′

=4B1nt + 8A1nt, say. (A24)
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We now consider the second term A1nt, which is a sum of an martingale
difference sequence over s2. For t2 > t1,

E(A1nt2A
∗
1nt1)

=
t1−1∑
s2=3

E

∫
Du(x, x′)Du(x̃, x̃′)∗Du(−x, x̃)

{
s2−1∑
s1=2

h(m)
s1

(x′)∗Z(l)
t2s2

Z
(l)
t2s1

}

×

{
s2−1∑
s1=2

h(m)
s1

(x̃′)Z(l)∗
t1s2

Z
(l)∗
t1s1

}
w1(x)w1(x′)w1(x̃)w1(x̃′)dxdx′dx̃dx̃′

=
∫

Du(x, x′)Du(x̃, x̃′)∗Du(−x, x̃)Du(−x′, x̃′)

×
t1−1∑
s2=3

s2−1∑
s1=2

E{Z(l)
t2s2

Z
(l)
t2s1

Z
(l)∗
t1s2

Z
(l)∗
t1s1

}w1(x)w1(x′)w1(x̃)w1(x̃′)dxdx′dx̃dx̃′,

where the second equality follows by independence between (ut) and (vt).
Noting Z

(l)
ts =

∑s−1
j=1 dn(j)G(l)

t−j,s−j and by straightforward but tedious al-
gebra, we have that for t2 > s2, t1 > s1,

∣∣∣E(Z(l)
t2s2

Z
(l)
t2s1

Z
(l)∗
t1s2

Z
(l)∗
t1s1

)
∣∣∣ ≤

 ∆M2
{

M−1
∑n−1

j=1 dn(j)
}2

, (t2 = t1)

∆M
{

M−1
∑n−1

j=1 dn(j)
}

, ( t2 > t1).

Therefore, we have

M−2E

∣∣∣∣∣n−2
n∑

t=2

A1nt

∣∣∣∣∣
2

=M−2n−4
n∑

t=2

E|A1nt|2

+2M−2n−4
n∑

t2=3

t2−1∑
t1=2

E(A1nt2A
∗
1nt1)

=O(n−1 + M−1). (A25)

Next, we consider the first term in (A24). Put D̄u ≡
∫
|Du(x, x′)|2w1(x)w1(x′)dxdx′.

Then

B1nt

=D̄u

t−1∑
s=2

(Z(l)
ts )2

+
t−1∑
s=2

∫
Du(x, x′){h(m)

s (x)∗h(m)
s (x′)∗ −Du(x, x′)∗}(Z(l)

ts )2w1(x)w1(x′)dxdx′

=B2nt + A2nt, say. (A26)
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Conditional on (vt)n
t=1, A2nt is a sum of an independent and identically

distributed sequence. It follows that

E|A2nt|2

=
t−1∑
s=2

E

∣∣∣∣∫ Du(x, x′){h(m)
s (x)h(m)

s (x′)−Du(x, x′)}∗(Z(l)
1ts)

2w1(x)w1(x′)dxdx′
∣∣∣∣2

≤
t−1∑
s=2

[∫
|Du(x, x′)|{E|h(m)

1 (x)h(m)
1 (x′)|2} 1

2 {E|Z(l)
1ts|4}

1
2 w1(x)w1(x′)dxdx′

]2

≤ ∆tM2

M−1
n−1∑
j=1

dn(j)


2

given E|Z(l)
ts |4 ≤ ∆M2

{
M−1

∑n−1
j=1 dn(j)

}2

as in (A22). Therefore,

M−2E

∣∣∣∣∣n−2
n∑

t=2

A2nt

∣∣∣∣∣
2

≤ M−2n−4

{
n∑

t=2

(E|A2nt|2)
1
2

}2

= O(n−1). (A27)

Now, we consider the first term in (A26). Recall Z
(l)
ts =

∑s−1
j=1 dn(j)G(l)

t−j,s−j

as in (A21), we decompose

B2nt =D̄u


t−1∑
s=2

s−1∑
j=1

d2
n(j){G(l)

t−j,s−j}
2


+ 2D̄u


t−1∑
s=3

s−1∑
j2=2

j2−1∑
j1=1

dn(j1)dn(j2)G
(l)
t−j1,s−j1

G
(l)
t−j2,s−j2


=B3nt + 2A3nt, say. (A28)

Recall G
(l)
t,s =

∫
g
(l)
t (y)g(l)

s (y)∗w2(y)dy as in (A14), we have,

A3nt = D̄u

t−3∑
j1=1

dn(j1)


t−2∑

j2=j1+1

dn(j2)
t−1∑

s=j2+1

G
(l)
t−j1,s−j1

G
(l)
t−j2,s−j2

 ,
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which is a sum of an martingale difference sequence over j1. It follows that

E |A3nt|2

= D̄2
u

t−3∑
j1=1

d2
n(j1)E

∣∣∣∣∣∣
t−2∑

j2=j1+1

dn(j2)
t−1∑

s=j2+1

G
(l)
t−j1,s−j1

G
(l)
t−j2,s−j2

∣∣∣∣∣∣
2

≤ D̄2
u

t−3∑
j1=1

d2
n(j1)


t−2∑

j2=j1+1

dn(j2)

E

∣∣∣∣∣∣
t−1∑

s=j2+1

G
(l)
t−j1,s−j1

G
(l)
t−j2,s−j2

∣∣∣∣∣∣
2


1
2


2

≤ ∆tM3

M−1
n−1∑
j1=1

d2
n(j1)


M−1

n−1∑
j2=1

dn(j2)


2

= O(tM3),

where the first inequality follows by Minkowski’s inequality and the sec-
ond one by E|

∑t−1
s=j2+1 G

(l)
t−j1,s−j1

G
(l)
t−j2,s−j2

|2 ≤ ∆t for t > s > j2 > j1.
Therefore,

M−2E

∣∣∣∣∣n−2
n∑

t=2

A3nt

∣∣∣∣∣
2

≤ M−2n−4

{
n∑

t=2

(E|A3nt|2)
1
2

}2

= O(M/n).

(A29)
Finally, noting E{G(l)

t−j,s−j}2 =
∫
|Dv(y, y′)|2w2(y)w2(y′)dydy′ ≡ D̄v, where

Dv(y, y′) = Eg
(l)
t (y)g(l)

t (y′), we have

B3nt

=D̄u

t−1∑
s=2

s−1∑
j=1

d2
n(j)E{G(l)

t−j,s−j}
2 +

t−1∑
s=2

s−1∑
j=1

d2
n(j)

[
{G(l)

t−j,s−j}
2 − E{G(l)

t−j,s−j}
2
]

=D̄uD̄v

t−1∑
s=2

s−1∑
j=1

d2
n(j)

+D̄u

t−1∑
s=2

s−1∑
j=1

d2
n(j)

∫
{g(l)

t−j(y)g(l)
t−j(y

′)−Dv(y, y′)}g(l)
s−j(y)∗g(l)

s−j(y
′)∗w2(y)w2(y′)

+D̄u

t−1∑
s=2

t−2∑
j=1

d2
n(j)

∫
Dv(y, y′){g(l)

s−j(y)∗g(l)
s−j(y

′)∗ −Dv(y, y′)∗}w2(y)w2(y′)

=E(S̃2
1nt) + A4nt + A5nt, say. (A30)
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By straightforward algebra, we obtain E|Acnt|2 ≤ ∆t2M for c = 4, 5. It
follows that

M−2n−4E

∣∣∣∣∣∣
n∑

t=j+1

Acnt

∣∣∣∣∣∣
2

≤ M−2n−4


n∑

t=j+1

(E|Acnt|2)
1
2


2

= O(M−1),

(A31)
c = 4, 5. Combining (A24)-(A31) and ES̃2

1nt = 4D̄uD̄v

∑t−1
s=2

∑s−1
j=1 d2

n(j),
we obtain

M−2V

{
n−2

n∑
t=2

E(S̃2
1nt|Ft−1)

}
≤ ∆M−2

5∑
c=1

E

∣∣∣∣∣n−2
n∑

t=2

Acnt

∣∣∣∣∣
2

= O(M/n + M−1) = o(1),

thus ensuring (A19). This completes the proof.

PROOF OF THEOREM A.4: Put δ̂u(x) = ϕ̂
(2m)
u (0)− |ϕ̂(m)

u (x)|2 and
δ̂v(y) = ϕ̂

(2l)
v (0)−|ϕ̂(l)

v (y)|2. Then Ĉ
(m,l)
o =

∫
δ̂u(x)w1(x)dx

∫
δ̂v(y)w2(y)dy.

We shall show∫
{δ̂u(x)− δu(x)}w1(x)dx =OP (p/n

1
2 + Bu(p)), (A32)∫

{δ̂v(y)− δy(y)}w2(y)dy =OP (q/n
1
2 + Bv(q)), (A33)

where δu(x) and δv(y) are defined as δ̂u(x) and δ̂v(y) with ϕ̂u and ϕ̂v

replaced by ϕu and ϕv. We show for (A32) only; the proof for (A33) is the
same. Put δ̃u(x) = ϕ̃

(2m)
u (0) − |ϕ̃(m)

u (x)|2. Then δ̂u(x) = δ̂u(x) − δ̃u(x) +
δ̃u(x)− δu(x). Noting ϕ̂u(x)− ϕ̃u(x) = n−1

∑n
t=1 ∆ĥt(x) where ∆ĥt(x) =

eixût − eixut , we first decompose

δ̂u(x)− δ̃u(x)

= n−1
n∑

t=1

∆ĥ
(2m)
t (0)− ϕ̃(m)

u (−x)

{
n−1

n∑
t=1

∆ĥ
(m)
t (x)

}

− ϕ̃(m)
u (x)

{
n−1

n∑
t=1

∆ĥ
(m)
t (−x)

}

−

{
n−1

n∑
t=1

∆ĥ
(m)
t (x)

}{
n−1

n∑
t=1

∆ĥ
(m)
t (−x)

}
.
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For 0 ≤ r ≤ m, we have

∫ ∣∣∣∣∣n−1
n∑

t=1

∆ĥ
(r)
t (x)

∣∣∣∣∣
2

w1(x)dx ≤ n−1
n∑

t=1

∫ ∣∣∣∆ĥ
(r)
t (x)

∣∣∣2 w1(x)dx

= OP (p2/n + B2
u(p))

by Lemma B.2. Also, by the Cauchy-Schwarz inequality and Lemma B.2,
we have

n−1
n∑

t=1

∣∣∣∆ĥ
(2m)
t (0)

∣∣∣
= n−1

n∑
t=1

∣∣û2m
t − u2m

t

∣∣
≤

{
n−1

n∑
t=1

(ûm
t − um

t )2
} 1

2
{

n−1
n∑

t=1

(ûm
t + um

t )2
} 1

2

≤ 2

{
n−1

n∑
t=1

∣∣∣∆ĥ
(m)
t (0)

∣∣∣2} 1
2

{
n−1

n∑
t=1

∣∣∣∆ĥ
(m)
t (0)

∣∣∣2 + n−1
n∑

t=1

u2m
t

} 1
2

= OP (p/n
1
2 + Bu(p)).

These, together with E|ϕ̃(m)
u (x)|2 ≤ ∆, imply∫ ∣∣∣δ̂u(x)− δ̃u(x)

∣∣∣ w1(x)dx = OP (p/n
1
2 + Bu(p)) (A34)

by Markov’s inequality. Similarly, noting

E|ϕ̃(r)
u (x)− ϕ(r)

u (x)|2 = E|n−1
n∑

t=1

h
(r)
t (x)|2 ≤ ∆n−1

for 0 ≤ r ≤ 2m given the independent and identical distribution assumption
on (ut) and Assumption A.4, we have∫ ∣∣∣δ̃u(x)− δu(x)

∣∣∣ w1(x)dx = OP (n−
1
2 ). (A35)

Combining (A34)-(A35) yields (32). It follows from (A32)-(A33) that

Ĉ(m,l)
o − C(m,l)

o = OP

{
(p + q)/n

1
2 + (Bu(p) + Bv(q))

}
. (A36)
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Hence, Ĉ
(m,l)
o − C

(m,l)
o = oP (M− 1

2 ) given the rate conditions on p, q. The
proof for D̂

(m,l)
o is more tedious but similar; we omit it here.

PROOF OF THEOREM 2: Because Ĉ
(m,l)
o →p C

(m,l)
o and D̂

(m,l)
o →p

D
(m,l)
o by (A36) and the conditions on p and q,

n−1∑
|j|=0

kr(j/M) = M

∫ ∞

−∞
kr(z)dz{1 + o(1)}

for r = 2, 4, and M/n → 0, we have

(M
1
2 /n)Cn(m, l)

=
{

2D(m,l)
o

∫ ∞

−∞
k4(z)dz

}− 1
2


n−1∑
|j|=0

d̃n(j)Î(m,l)
n (j)

 {1 + o(1)}+ oP (1),

where d̃n(j) = (1− |j|/n)k2(j/p) ≤ dn(j). Hence, it suffices to show

n−1∑
|j|=0

d̃n(j)Î(m,l)
n (j) =

∞∑
|j|=0

I(m,l)(j) + oP (1). (A37)

Write

n−1∑
|j|=0

d̃n(j)Î(m,l)
n (j) =

n−1∑
|j|=0

d̃n(j)I(m,l)(j) +
n−1∑
|j|=0

d̃n(j)
{

Î(m,l)
n (j)− I(m,l)(j)

}

=
n−1∑
|j|=0

d̃n(j)I(m,l)(j) + R̂(m,l)
n , say. (A38)

Noting I
(m,l)
j (x, y) = Eh

(m)
t (x)g(l)

t−j(y), we have

|I(m,l)
j (x, y)| ≤ 2φ(j)

1
2

{
E|h(m)

t (x)|2
} 1

2
{

E|g(l)
t−j(y)|2

} 1
2

and

|I(m,l)
j (x, y)| ≤ 2(2

1
2 + 1)α(j)

η
2+2η

{
E|h(m)

t (u)|2
} 1

2
{

E|g(l)
t−j(v)|2+2η

} 1
2+2η
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(cf. White, 1984, Corollary 6.16). It follows that
∑∞

j=1 I(m,l)(j) < ∞ given
Assumption A.5. Therefore, for the first term of (A38),

n−1∑
|j|=0

d̃n(j)I(m,l)(j) =
∞∑

|j|=0

I(m,l)(j) +
n−1∑
|j|=0

{d̃n(j)− 1}I(m,l)(j)−
∞∑

|j|=n

I(m,l)(j)

=
∞∑

|j|=0

I(m,l)(j) + o(1), (A39)

where
∑n−1

j=1 {d̃n(j) − 1}I(m,l)(j) → 0 by dominated convergence given
|d̃n(j)−1| ≤ 2, d̃n(j)−1 → 0 as n →∞ for any given j, and

∑∞
|j|=0 I(m,l)(j) <

∞; the latter also implies
∑∞

|j|=n I(m,l)(j) → 0.

We now show that R̂
(m,l)
n in (A38) vanishes in probability. Because

R̂(m,l)
n =

n−1∑
j=1

d̃n(j)
∫ ∣∣∣Î(m,l)

j (x, y)− I
(m,l)
j (x, y)

∣∣∣2 w1(x)w2(y)dxdy

+ 2
n−1∑
j=1

d̃n(j)Re
∫ [

{Î(m,l)
j (x, y)− I

(m,l)
j (x, y)}I(m,l)

j (x, y)∗
]

× w1(x)w2(y)dxdy,

it suffices to show that the first term vanishes in probability; that the
second term vanishes then follows by the Cauchy-Schwarz inequality. Write∣∣∣Î(m,l)

j (x, y)− I
(m,l)
j (x, y)

∣∣∣2 ≤ 2
∣∣∣Î(m,l)

j (x, y)− Ĩ
(m,l)
j (x, y)

∣∣∣2
+ 2

∣∣∣Ĩ(m,l)
j (x, y)− I

(m,l)
j (x, y)

∣∣∣2 ,

where Ĩ
(m,l)
j (x, y) is defined as Î

(m,l)
j (x, y) with (ût, v̂t) replaced by (ut, vt).

For the first term, we have

n−1∑
|j|=0

d̃n(j)
∫ ∣∣∣Î(m,l)

j (x, y)− Ĩ
(m,l)
j (x, y)

∣∣∣2 w1(x)w2(y)dxdy

=OP

{
M(p2/n + B2

u(p))(q2/n + B2
v(q))

}
=oP (1) (A40)

by (A11) and p + q = o(n
1
2 /M

1
4 ), Bu(p) + Bv(q) = o(M− 1

4 ). (Note that
(A11) holds here as it does not assume independence between (ut) and
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(vt).) For the second term, using (A3), we have

E
∣∣∣Ĩ(m,l)

j (x, y)− I
(m,l)
j (x, y)

∣∣∣2
≤ 2E

∣∣∣γ̃(m,l)
j (x, y)− I

(m,l)
j (x, y)

∣∣∣2
+2

E

∣∣∣∣∣∣(n− j)−1
n∑

t=j+1

h
(m)
t (x)

∣∣∣∣∣∣
4


1
2

E

∣∣∣∣∣∣(n− j)−1
n∑

t=j+1

g
(l)
t−j(y)

∣∣∣∣∣∣
4


1
2

≤ ∆(n− j)−1

where E|γ̃(m,l)
j (x, y) − I

(m,l)
j (x, y)|2 ≤ ∆(n − j)−1 by Lemma B.5 in

Appendix B, E|(n − j)−1
∑n

t=j+1 h
(m)
t (x)|4 ≤ ∆(n − j)−2 and E|(n −

j)−1
∑n

t=j+1 g
(l)
t−j(y)|4 ≤ ∆(n − j)−2 given Assumption A.4 and that (ut)

and (vt) are each an independent and identically distributed sequence. It
follows that

n−1∑
j=1

d̃n(j)E
∣∣∣γ̃(m,l)

j (x, y)− I
(m,l)
j (x, y)

∣∣∣2 ≤∆(M/n)

M−1
n−1∑
j=1

dn(j)


=O(M/n). (A41)

Combining (A40)-(A41) yields R̂
(m,l)
n →p 0. This, together with (A38)-

(A39), implies (A37). The proof is thus completed.

APPENDIX B

Lemma B.1. Suppose that Assumption A.3 holds. Let M →∞,M/n →
0. Then M−1

∑n−1
|j|=0 k2(j/M)(1− |j/n|)−1 = O(1).
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Proof. Put q = M1− 1
2b n

1
2b . Then q/M →∞, q/n → 0. We have

M−1
n−1∑
|j|=0

k2(j/M)(1− |j/n|)−1

= M−1

q∑
|j|=0

k2(j/M)(1− |j/n|)−1 + M−1
n−1∑

|j|=q+1

k2(j/M)(1− |j/n|)−1

≤ (1− q/n)−1M−1

q∑
|j|=0

k2(j/M) + C2nM2b−1q−2b
n−1∑

|j|=q+1

(j/q)−2b

= O(1)

for all n sufficiently large, where M−1
∑q

|j|=0 k2(j/M) →
∫∞
−∞ k2(z)dz and∑n−1

|j|=q+1(j/q)−2b ≤ ∆ < ∞ given Assumption A.3.

Lemma B.2. Suppose that Assumptions A.1-A.2 and A.4 hold. Let
Bu(p) and Bv(q) be defined as in Theorem 1. Then for 0 ≤ r ≤ m,

n−1
n∑

t=1

∫ ∣∣(iût)reixût − (iut)reixut
∣∣2 w1(x)dx = OP

{
p2/n + B2

u(p)
}

,

n−1
n∑

t=1

∫ ∣∣(iv̂t)reiyv̂t − (ivt)reiyvt
∣∣2 w2(y)dx = OP

{
q2/n + B2

v(q)
}

.

Proof. We show for (ût) only; the proof for (v̂t) is the same. Because
(iût)reixût − (iut)reixut = {(iût)r − (iut)r}eixût +(iut)r(eixût − eixut), and
|eixût − eixut | ≤ |xût − xut| (cf. Chung, 1974, p.154), we have

∣∣(iût)reixût − (iut)reixut
∣∣2 ≤ 2 (ûr

t − ur
t )

2 + 2x2u2r
t (ût − ut)2. (A42)
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By the binomial formula, we obtain

n−1
n∑

t=1

(ûr
t − ur

t )
2 =n−1

n∑
t=1

{(ût − ut + ut)r − ur
t}

2

=n−1
n∑

t=1

{
r∑

c=1

(r
c) (ût − ut)cur−c

t

}2

≤∆(r)
r∑

c=1

(r
c)

2
n−1

n∑
t=1

(ût − ut)2cu
2(r−c)
t

≤∆(r)
r∑

c=1

(r
c)

2

{
n−1

n∑
t=1

(ût − ut)4c

} 1
2

{
n−1

n∑
t=1

u
4(r−c)
t

} 1
2

,

(A43)

where ∆(r) is a finite constant depending on r only. Here, n−1
∑n

t=1 u
4(r−c)
t =

OP (1) by Markov’s inequality and Assumption A.4.
We now consider n−1

∑n
t=1(ût − ut)4c. Put bt(p) =

∑∞
j=p+1 αjXt−j . Be-

cause Xt = X ′
t(p)α̂(p) + ût = X ′

t(p)α(p) + bt(p) + ut, we have

n−1
n∑

t=1

(ût − ut)4c =n−1
n∑

t=1

{X ′
t(p)(α(p)− α̂(p)) + bt(p)}4c

≤∆(c)

{
‖α̂(p)− α(p)‖4c

n−1
n∑

t=1

‖Xt(p)‖4c + n−1
n∑

t=1

b4c
t (p)

}

=OP

p2/n + p

 ∞∑
j=p+1

|αj |

2


2c

=OP

{
p2/n + B2

u(p)
}2c

(A44)

by Lemma B.3 below, n−1
∑n

t=1 ||Xt(p)||4c = OP (p2c) and n−1
∑n

t=1 b4c
t (p) =

OP {
∑∞

j=p+1 |αj |}4c. Because r is a fixed integer and p2/n + B2
u(p) → 0,

the order of n−1
∑n

t=1 (ûr
t − ur

t )
2 is determined by the slowest vanishing

term (c = 1) in (A43). It follows that we have

n−1
n∑

t=1

(ûr
t − ur

t )
2 = OP

{
p2/n + B2

u(p)
}

. (A45)
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Also, we have by the Cauchy-Schwarz inequality and (A44) with c = 1 that

n−1
n∑

t=1

u2r
t (ût − ut)2 ≤

{
n−1

n∑
t=1

(ût − ut)4
} 1

2
{

n−1
n∑

t=1

u4r
t

} 1
2

=OP

{
p2/n + B2

u(p)
}

. (A46)

Combining (A42), (A45)-(A46) and Assumption A.2 yields the desired re-
sult.

Lemma B.3. Suppose that Assumptions A.1 and A.4 hold. Let α̂(p) and
β̂(q) be the ordinary least squares estimators for the truncated autoregres-
sions of Xt and Yt. Then

‖α̂(p)− α(p)‖2 = OP

p/n +

 ∞∑
j=p+q

|αj |

2
 ,

∥∥∥β̂(q)− β(q)
∥∥∥2

= OP

q/n +

 ∞∑
j=p+q

|βj |

2
 .

Proof. We show for α̂(p) only. Put

bt(p) =
∞∑

j=p+1

αjXt−j , R̂(p) = (n− p)−1
n∑

t=p+1

Xt(p)X ′
t(p)

and R(p) = EXt(p)X ′
t(p). Then α̂(p) = R̂(p)−1(n− p)−1

∑n
t=p+1 Xt(p)Xt.

Hence,

α(p)− α̂(p) =R̂(p)−1

{
(n− p)−1

n∑
t=p+1

Xt(p)(ut + bt(p))

}
=R̂(p)−

1
2

{
R̂(p)−

1
2 Â(p) + R̂(p)−

1
2 B̂(p)

}
=R(p)−

1
2

{
R̂(p)−

1
2 Â(p) + R̂(p)−

1
2 B̂(p)

}
+

{
R̂(p)−

1
2 −R(p)−

1
2

}{
R̂(p)−

1
2 Â(p) + R̂(p)−

1
2 B̂(p)

}
=T1n + T2n, say, (A47)
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where Â(p) = (n− p)−1
∑n

t=p+1 Xt(p)ut and

B̂(p) = (n− p)−1
n∑

t=p+1

Xt(p)bt(p).

For the first term,

‖T1n‖2 ≤2λ−1
min{R(p)}

{∥∥∥R̂(p)−
1
2 Â(p)

∥∥∥2

+
∥∥∥R̂(p)−

1
2 B̂(p)

∥∥∥2
}

=OP

p/n +

 ∞∑
j=p+1

|αj |

2
 , (A48)

where∥∥∥R̂(p)−
1
2 Â(p)

∥∥∥2

=
∥∥∥Â′(p)R(p)−1Â(p) + Â′(p)

{
R̂(p)−1 −R(p)−1

}
Â(p)

∥∥∥2

≤ 2λ−1
min {R(p)}

∥∥∥Â(p)
∥∥∥2

+ 2
∥∥∥R̂(p)−1 −R(p)−1

∥∥∥∥∥∥Â(p)
∥∥∥2

= OP (p/n)

given λmin {R(p)} ≥ ∆ > 0 (cf. Berk, 1974, p. 491),
∥∥∥Â(p)

∥∥∥2

= OP (p/n)

by Chebyshev’s inequality and
∥∥∥R̂(p)−1 −R(p)−1

∥∥∥ = OP (p/n
1
2 ) → 0, as

can be obtained from the proof of Lemma 3 of Berk (1974, p.493). Also,
by projection, we have∥∥∥R̂(p)−

1
2 B̂(p)

∥∥∥2

= B̂(p)′R̂(p)−1B̂(p) ≤ (n− p)−1
n∑

t=p+1

b2
t (p)

= OP

 ∞∑
j=p+1

|αj |

2

,

where the last equality follows by Markov’s inequality and Eb2
t (p) ≤

∆(
∑∞

j=p+1 |αj |)2. Next, for the second term,

‖T2n‖2 ≤
∥∥∥R̂(p)−

1
2 −R(p)−

1
2

∥∥∥2 ∥∥∥R̂(p)−
1
2 Â(p) + R̂(p)−

1
2 B̂(p)

∥∥∥2

=oP (‖T1n‖2), (A49)

where ||R̂(p)−
1
2 − R(p)−

1
2 ||2 = oP (1) given ||R̂(p)−1 − R(p)−1||2 = oP (1)

and λmin{R(p)} ≥ ∆ > 0. Combining (A47)-(A48) yields the desired re-
sult.
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Lemma B.4. Suppose that Assumptions A.1-A.4 hold. Let M →∞,M/n →
0. If (ut) and (vt) are mutually independent, then

V (S̄n) = 2D(m,l)
o

n−2∑
|j|=0

k4(j/M) + O(M/n),

where D
(m,l)
o is as in Theorem A.3 .

Proof. Because E(Snt|Ft−1) = 0 and E(S1ntS2nt|Ft−1) = 0, we have
ES̄2

n = n−2
∑n−1

t=2 ES2
1nt + ES2

2nt,where S1nt and S2nt are as in (A17). We
first consider ES2

1nt. Rewrite S1nt = 2
∑t−1

s=2 Re(H(m)
t,s

∑s−1
j=1 dn(j)G(l)

t−j,s−j).
Conditional on ut and (vs)n

s=1, S1nt is a sum of an independent and iden-
tically distributed sequence. We thus have

ES2
1nt = 4

t−1∑
s=2

E


s−1∑
j=1

dn(j)Re(H(m)
t,s G

(l)
t−j,s−j)


2

= 4
t−1∑
s=2

s−1∑
j=1

d2
n(j)E

{
Re(H(m)

t,s G
(l)
t−j,s−j)

}2

= 4D(m,l)
o

t−1∑
s=2

s−1∑
j=1

d2
n(j),

where the last two equalities follow because for t > s > j1 > j2

E
{

G
(l)
t−j1,s−j1

G
(l)
t−j2,s−j2

)
}

= 0
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and for t > s > j,

4E
{

Re(H(m)
t,s G

(l)
t−j,s−j)

}2

= E
{

H
(m)
t,s G

(l)
t−j,s−j + (H(m)

t,s )∗(G(l)
t−j,s−j)

∗
}2

=
{

E(H(m)
t,s )2E(G(l)

t−j,s−j)
2

+ E(H(m)∗
t,s )2E(G(l)∗

t−j,s−j)
2 + 2E|H(m)

t,s |2E|G(l)
t−j,s−j |

2
}

= 2
∫
|Eh

(m)
1 (x)h(m)

1 (x′)|2w1(x)w2(x′)dxdx′

×
∫
|Eg

(l)
1 (y)g(l)

1 (y′)|2w1(y)w2(y′)dydy′

+ 2
∫
|Eh

(m)
1 (x)h(m)

1 (−x′)|2w1(x)w2(x′)dxdx′

×
∫
|Eg

(l)
1 (y)g(l)

1 (−y′)|2w1(y)w2(y′)dydy′

= 4D(m,l)
o ,

where Eh
(m)
1 (x)h(m)

1 (x′) = ϕ
(2m)
u (x + x′)− ϕ

(m)
u (x)ϕ(m)

u (x′) and

Eg
(l)
1 (y)g(l)

1 (y′) = ϕ(2l)
u (x + x′)− ϕ(l)

u (x)ϕ(l)
u (x′).

Note that the last equality follows by symmetry of w1(·) and w2(·). Simi-
larly, ES2

2nt = 4D
(m,l)
o

∑t−1
s=2

∑s−1
j=0 d2

n(j). Hence, we have

ES̄2
n = 4D(m,l)

o n−2
n−1∑
t=2

t−1∑
s=1

s−1∑
|j|=0

d2
n(j)

= 2D(m,l)
o

n−2∑
|j|=0

{1− (n− |j|)−1}k4(j/M)

= 2D(m,l)
o

n−2∑
|j|=0

k4(j/M) + O(M/n),

where
∑n−1

|j|=0(n−|j|)−1k4(j/M) ≤ n−1
∑n−1

|j|=0 dn(j) = O(M/n) by Lemma
B.1.

Lemma B.5. Suppose that Assumptions A.1-A.2 and A.4-A.5 hold. Let

γ̃
(m,l)
j be defined as in Theorem A.2. Then E

∣∣∣γ̃(m,l)
j (x, y)− I

(m,l)
j (x, y)

∣∣∣2 ≤
∆(n− j)−1.
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Proof. Put Cut(x) = cos(xut)−E cos(xut), Sut(x) = sin(xut)−E sin(xut),
Cvt(y) = cos(yvt)− E cos(yvt), and Svt(y) = sin(yvt)− E sin(yvt). Define

W
(m,l)
1tj (u, v) = C

(m)
ut (x)C(l)

vt−j(y)− E{C(m)
ut (x)C(l)

vt−j(y)},

W
(m,l)
2tj (u, v) = S

(m)
ut (x)S(l)

vt−j(y)− E{S(m)
ut (x)S(l)

vt−j(y)},

W
(m,l)
3tj (u, v) = C

(m)
ut (x)S(l)

vt−j(y)− E{C(m)
ut (x)S(l)

vt−j(y)},

W
(m,l)
4tj (u, v) = S

(m)
ut (x)C(l)

vt−j(y)− E{S(m)
ut (x)C(l)

vt−j(y)}

for j ≥ 0. Noting that I
(m,l)
j (x, y) = Eγ̃

(m,l)
j (x, y), we have

(n− j)
{

γ̃
(m,l)
j (x, y)− I

(m,l)
j (x, y)

}
=

n∑
t=j+1

{
W

(m,l)
1tj (x, y)−W

(m,l)
2tj (x, y)

}
+ i

n∑
t=j+1

{
W

(m,l)
3tj (x, y) + W

(m,l)
4tj (x, y)

}
.

It follows that

(n− j)2E
∣∣∣γ̃(m,l)

j (x, y)− I
(m,l)
j (x, y)

∣∣∣2 ≤ 2
4∑

c=1

E


n∑

t=j+1

W
(m,l)
ctj (x, y)


2

.

We now show E{
∑n

t=j+1 W
(m,l)
ctj (x, y)}2 ≤ ∆(n − j) for c = 1, 2, 3, 4. We

first consider c = 1 by applying White’s (1984) Lemma 6.19. Given (x, y),
W

(m,l)
1tj (x, y) is a measurable function of (ut, vt) and (ut−j , vt−j) for each

t and j, with EW1tj(x, y) = 0 for all t, j. Furthermore, by Jensen and Cr

inequalities and Assumption A.5, we have

E
∣∣∣W (m,l)

1tj (x, y)
∣∣∣2+2η

≤ ∆(η)
{

E
∣∣∣C(m)

ut (x)C(l)
vt−j(y)

∣∣∣2+2η

+
∣∣∣EC

(m)
ut (x)C(l)

vt−j(y)
∣∣∣2+2η

}
≤ 2∆(η)E

∣∣∣C(m)
ut (x)C(l)

vt−j(y)
∣∣∣2+2η

≤ 2∆(η)
(
E |ut|4m(1+η)

E|vt|4l(1+η)
) 1

2

≤ ∆
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In addition, (ut, vt) is a stationary mixing process with either φ(j) of size 2
or α(j) of size η/(2+2η), η > 0. It follows that all the conditions of Lemma
6.19 of White (1984) are satisfied. Therefore, E{

∑n
t=j+1 W

(m,l)
1tj (x, y)}2 ≤

∆(n − j). Similar results hold for c = 2, 3, 4. Hence, E|γ̃(m,l)
j (x, y) −

I
(m,l)
j (x, y)|2 ≤ ∆(n− j)−1. This completes the proof.
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