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This paper studies the finite horizon version of the negotiation model of
Busch and Wen (1995). Two players bargain over the division of a certain
surplus in finitely many periods. In the absence of an agreement, players’
payoffs in a period are determined by a disagreement game. The set of equi-
librium payoffs is determined by backward induction. If at least one player
has distinct Nash payoffs in the disagreement game, the set of subgame per-
fect equilibrium payoffs converges to that of the corresponding infinite horizon
negotiation game as the game horizon increases to infinity. Otherwise, the fi-
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1. INTRODUCTION

There is a large literature on non-cooperative bargaining theory since
Rubinstein’s (1982) two-player infinite horizon bargaining model with per-
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fect information. Busch and Wen (1995) generalize Rubinstein’s model by
introducing a possible existing strategic relationship between the two play-
ers, called the (interim) disagreement game, into the model. This disagree-
ment game is played in any period in which an offer is rejected, and hence
determines the players’ payoffs in that period. Such a negotiation game
generally has multiple perfect equilibrium outcomes, including inefficient
equilibria in which the two players do not reach an agreement immediately.
The wage bargaining model of Haller and Holden (1990) and Fernandez
and Glazer (1991) is a special case of this negotiation model. Recently, a
number of issues in the negotiation model have been investigated. Houba
(1997) considers the case when the bargaining frontier is the Pareto fron-
tier of the disagreement game payoffs, Busch and Wen (2000) discuss the
effects of observability of mixed disagreement game actions, and Furusawa
and Wen (2000) consider the effects of inflexible disagreement actions where
the players bargain for a number of rounds before they can change their
disagreement game actions.

In this paper, we study the finite horizon negotiation model, and com-
pare it to the infinite horizon negotiation model of Busch and Wen (1995).
We show that, if at least one player has multiple Nash equilibrium payoffs
in the disagreement game, then as the game horizon increases the set of
average SPE (Subgame Perfect Equilibrium) payoffs in the finite horizon
negotiation game will converge to that in the corresponding infinite horizon
negotiation game when the players are sufficiently patient. The contribu-
tion of this paper is to bridge the finite and the infinite horizon negotiation
games.

Our work in this paper is motivated by the similar studies in both the
bargaining and repeated game literatures. It is well known that the unique
SPE outcome in St̊ahl’s (1972) two-player finite horizon bargaining model
converges to the unique SPE outcome of Rubinstein’s (1982) discounting
formulation as the game horizon goes to infinity. The relatively simple
infinite horizon bargaining model is therefore a reasonable approximation
of the finite horizon bargaining model. It is theoretically important to know
if the same is true between the finite and the infinite horizon negotiation
models.

The negotiation model of Busch and Wen (1995) is also related to re-
peated game models. As exemplified by Houba (1997), the negotiation
model can be treated as an infinitely repeated game in which the two play-
ers may write a binding contract on their future actions. The study and
comparison of finite and infinite horizon repeated games have received a
lot of attention in the repeated game literature; see Aumann (1989) for a
survey on this subject. One well-known result in repeated games is the
Folk Theorem. It asserts that any feasible and individually rational pay-
off of a stage game can be supported or approximated by an equilibrium
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outcome in the corresponding repeated game, when the stage game sat-
isfies certain conditions. For infinitely repeated games with discounting,
Fudenberg and Maskin (1986) prove a Folk Theorem if the stage game
has either only two players or satisfies the full dimensionality condition.
Abreu, Dutta and Smith (1994) find a weaker dimensionality condition,
called NEU (Non-Equivalent Utility), to replace the full dimensionality
condition in Fudenberg and Maskin (1986). Wen (1994) introduces the
notion of an effective minimax value to characterize the set of SPE payoffs
when players are sufficiently patient. The effective minimax value will be
equivalent to the standard minimax value if the stage game has only two
players or satisfies the NEU condition.

For finitely repeated games, Benôit and Krishna (1985) establish a Folk
Theorem if every player has distinct Nash payoffs in a stage game that
satisfies the same conditions as in Fudenberg and Maskin’s (1986) Folk
Theorem. In a finitely repeated game, a feasible payoff vector can be ap-
proximated by an average SPE payoff when the game horizon is sufficiently
long. Smith (1995) relaxes the condition that every player have distinct
Nash payoffs, imposing the condition of recursively distinct Nash payoffs.
For games with more than two players that do not satisfy the NEU con-
dition, Wen’s (1994) effective minimax values also characterize the limit
(as the game horizon goes to infinity) of the average SPE payoffs in a
finitely repeated game, as long as the stage game satisfies the condition of
recursively distinct Nash payoffs. Therefore, with or without the NEU con-
dition, as the game horizon goes to infinity, the set of average SPE payoffs
of a finitely repeated game converges to that of the corresponding infinitely
repeated game when players are sufficiently patient.

In this paper, we will establish a similar linkage between finite horizon
and infinite horizon negotiation games. We show that if at least one player
has distinct Nash payoffs in the disagreement game, then the limiting set
of average SPE payoffs in a finite horizon negotiation game as the game
horizon goes to infinity, and that in the corresponding infinite horizon ne-
gotiation game as players become sufficiently patient, are the same. The
limiting set of average SPE payoffs is characterized by the players’ mini-
max values and their highest effective disagreement payoffs in the disagree-
ment game. A player’s highest effective disagreement payoff, introduced
by Busch and Wen (1995), is the player’s highest disagreement payoff after
compensating his opponent for a foregone one-shot gain from deviation.

While a player may have different effective and standard minimax values
in the disagreement game, unlike in a repeated game, in the negotiation
game a player’s lowest SPE payoff is higher than his standard minimax
value in the disagreement game. Indeed, his lowest SPE payoff in the
negotiation game is constructed based on his standard minimax value and
his opponent’s highest effective disagreement payoff, where both values are
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determined by the disagreement game. In contrast to the Folk Theorem
for finitely repeated games, the main result in this paper asserts that every
feasible payoff vector where each player receives more than his lowest SPE
payoff can be approximated by an average SPE payoff vector in the finite
horizon negotiation game with a sufficiently long horizon.

On the other hand, when both players have a unique Nash payoff in
the disagreement game, then any finite horizon negotiation game will have
a unique SPE outcome by backward induction, while the corresponding
infinite horizon negotiation game may still have multiple SPE outcomes
[see Busch Wen (1995)]. As for finitely repeated games, if every player has
a unique Nash payoff in the disagreement game, then there will be a unique
SPE outcome in the last period of the negotiation game. There then also
will be a uniquely determined SPE in the second last period, and so on. By
backward induction, as long as the game horizon is finite, the negotiation
game will have a unique SPE outcome.

Since an infinitely repeated game in which players can form binding (ex-
plicit) contracts on their future actions is an alternative interpretation of
the negotiation model, the results in this paper, together with those in
Busch and Wen (1995), imply that the set of average SPE payoffs in this
case is different from that in the corresponding infinitely repeated game
with implicit contracts only. Furthermore, a player’s standard minimax
value in the stage game alone is insufficient to characterize individual ra-
tionality when explicitly binding contracts are possible.

In the infinite horizon negotiation model, Busch and Wen (1995) derive
the lower bound of a player’s SPE payoffs following the arguments of Shaked
and Sutton (1984). This lower bound is then supported by a SPE payoff
when the players are sufficiently patient. Therefore, this lower bound is
indeed the player’s lowest SPE payoff in the infinite horizon negotiation
game, and is used as the punishment to enforce this player’s actions in
other SPE outcomes. For finite horizon negotiation games, we find that a
player’s average SPE payoffs are also not less than his lowest SPE payoff
in the corresponding infinite horizon negotiation game. We call a SPE as
a player’s optimal punishment if the player receives his lowest SPE payoff
compared to any other SPE of the game. Directly calculating a player’s
optimal punishment is complicated, tedious and unnecessary. Instead, we
construct a SPE in the finite horizon game where one player’s payoff will
converge to his lowest SPE payoff in the corresponding infinite horizon
negotiation game, as the game horizon goes to infinity. This constructed
SPE is then an approximation of the player’s optimal punishment when
the game horizon is sufficiently long.

The construction of this approximated optimal punishment in the finite
horizon negotiation game is possible only when at least one player has dis-
tinct Nash payoffs in the disagreement game. In this case, each player
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will have distinct SPE payoffs in the last two periods of the negotiation
game. When the game has a sufficiently long horizon, the difference be-
tween a player’s SPE payoffs will be sufficient large to enforce almost all
disagreement actions for finitely many periods. In particular, it is possible
to support one player’s minimax value and the other player’s highest effec-
tive disagreement value alternately for every two periods. To approximate
any feasible payoff vector where each player receives no less than his low-
est SPE payoff, players’ actions are enforced by the approximated optimal
punishments in the finite horizon negotiation game.

The rest of this paper is organized as follows. We first introduce the finite
horizon negotiation model in Section 2, and then formulate the backward
induction to define SPE payoffs in Section 3. In Section 4, we investigate
SPE outcomes in the negotiation game that are based on the Nash dis-
agreement payoffs. In Section 5, we derive a SPE that approximates a
player’s optimal punishment in the finite horizon game and show that a
player’s average payoff in his approximated optimal punishment converges
to his lowest SPE payoff in the corresponding infinite horizon game. Then
we characterize the limit of the average SPE payoffs as the game horizon
goes infinity in Section 6.

2. THE FINITE HORIZON NEGOTIATION MODEL

Two players, 1 and 2, bargain to share some surplus in T periods, where
T is finite. The surplus to be shared in each period is normalized to 1.
During each period before the players reach an agreement, one player makes
a proposal and the other player may either accept or reject the proposal.
A proposal is identified by the players’ shares of the surplus, (b, 1− b) ∈ ∆
for b ∈ [0, 1], where ∆ is the unit simplex in R2. Here b is player 1’s
proposed share and 1 − b is player 2’s proposed share of the surplus, in
each of the remaining periods. If the proposal is accepted, indicated by Y ,
then the proposal becomes an agreement, and the two players will share the
surplus according to this agreement in each of the remaining periods of the
negotiation game. If the proposal is rejected, indicated by N , then the two
players play a one-shot game, called the disagreement game, before either
a counter proposal will be made in the next period or the negotiation game
ends. The two players alternate in making proposals as in Rubinstein’s
(1982) bargaining model. Without loss of generality, we assume that player
1 makes a proposal in the last period, period T . Since the game described
here has a finite horizon T , we will apply backward induction to study
Subgame Perfect Equilibria (SPE) of the negotiation model.

The disagreement game is a two-player game in normal form
G = {A1, A2, u1(·), u2(·)}. Ai is the set of player i’s disagreement actions
and ui(·) : A = A1 × A2 → R is player i’s payoff function in the dis-
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agreement game, where A is the set of disagreement outcomes. We assume
that both players observe all past actions in the disagreement game. If
Ai contains player i’s mixed disagreement actions, this assumption implies
that past mixed disagreement actions are observable.1 The set of feasi-
ble payoff vectors of G is the convex hull of u(A), denoted by Co[u(A)].
Without loss of generality, the two players may choose their disagreement
actions contingent on the outcome of a public randomizing device. Hence,
in terms of the expected value, every feasible payoff vector in Co[u(A)] can
be achieved in a one-shot play of the disagreement game G. The players’
action sets and payoff functions satisfy the sufficient conditions under which
the disagreement game G has at least one Nash equilibrium. If the players
choose a ∈ A after the rejection in a period, their payoffs for the period
are given by u(a). Therefore both players receive payoffs in every period,
with or without an agreement. Players’ payoffs from this finite horizon
negotiation game are the sum of their payoffs in all T periods. In this
paper, we focus on the case where players do not discount future payoffs.
However, our results can easily be generalized to the case where players
discount their payoffs. Let NG(T ) denote the negotiation game with finite
T periods. According to this notation, after the first proposal is rejected
in NG(T ), the players will play G and then NG(T − 1), which starts with
a different player. Denote the subgame after the first rejection in NG(T )
by GNG(T ) = G⊕NG(T − 1).

Let mi be a disagreement action profile that minimaximizes player i, for
i = 1, 2, in the disagreement game G. That is, for i 6= j,

mi ∈ arg min
aj∈Aj

max
ai∈Ai

ui(ai, aj). (1)

Without loss of generality, we can normalize the disagreement game G so
that every player has a minimax payoff of zero, ui(mi) = 0 for i = 1, 2.
Let F denote the set of feasible and individually rational payoffs of the
disagreement game G, where F = Co[u(A)]∩R2

+. The final assumption is
that any disagreement outcome in F is (weakly) Pareto dominated by at
least one agreement,

u1(a) + u2(a) ≤ 1, for all a ∈ A. (2)

It is therefore in both players’ interest to have an agreement sooner rather
than later.

A strategy profile in NG(T ) consists of two functions which map from
the sets of all appropriate histories into the sets of appropriate actions.

1For an infinite horizon negotiation game where only the realizations of past mixed
disagreement actions, but not the mixed disagreement actions themselves, are observable
to the two players see Busch and Wen (2000).
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There are three types of histories in every period. The first type histories
are those at the beginning of a period, H1 = ∆t−1×At−1 for t = 1, · · · , T .
They contain all past rejected proposals and disagreement action profiles.
Type 2 histories are those after a proposal is made in a period, H2(t) =
H1(t) × ∆. Type 3 histories are those after a proposal is rejected in a
period, H3(t) = H2(t) × {N}. For example, when T is odd, a strategy
profile in NG(T ) is a pair of functions,

(f1, f2) : H1(t) → ∆× {S}; H2(t) → {S} × {Y,N}; H3(t) → A for odd t,
(f1, f2) : H1(t) → {S} ×∆; H2(t) → {Y, N} × {S}; H3(t) → A for even t,

where S denotes that the player keeps silent while waiting for either his
opponent’s proposal or his opponent’s response to his proposal. Every
strategy profile induces a unique outcome path and every outcome path
yields a unique payoff to every player. Let π(T ) = (a1, · · · , aT0−1, bT0 , {Y })
denote a generic outcome path of NG(T ), where at is the disagreement
outcome played in period t for t < T0, and bT0 is the agreement reached in
period T0 if there is an agreement. If the players do not have an agreement,
then set T0 = T +1. The players’ total payoffs from such an outcome path
are the sum of their payoffs in all T periods,

T0−1∑
t=1

u(at) + (T − T0 + 1)(bT0 , 1− bT0). (3)

In this paper, we investigate SPE of the finite horizon negotiation game.
A SPE is a strategy profile that induces a Nash equilibrium outcome in
the continuation game after any history. In other words, no player may
benefit from any unilateral deviation after any history in the negotiation
game. We will focus on SPE payoffs in the negotiation game. The set of
SPE payoffs can be found by backward induction. It is straightforward to
recover SPE strategy profiles from the set of SPE payoffs.

3. BACKWARD INDUCTION AND SPE PAYOFFS

In this section we derive the set of SPE payoffs in NG(T ) by backward
induction. In contrast to the finite horizon repeated games in Benôit and
Krishna (1985, 1993), and Wen (1996), the backward induction for the
finite negotiation model is based on the structure of the negotiation game
as well as the subgame perfection criterion.

First, consider the last period of the negotiation game, which is denoted
as NG(1). After a rejection, any SPE must induce a Nash equilibrium of
G, since the game ends after the players play G once and G is given in
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normal form. Let P (1) be the set of SPE payoffs in game G. P (1) is a
compact subset of F . In general it contains only finitely many points.

Recall that player 1 makes the proposal in the last period. Player 1
should never offer player 2 more than player 2’s best payoff in P (1), since
player 2 will certainly accept any offer in which player 2’s share is not less
than his best payoff in P (1). On the other hand, player 1 should never
offer player 2 less than player 2’s worst payoff in P (1), since such an offer
will definitely be rejected. Denote player 2’s best and worst payoffs in P (1)
as, respectively,

B2(1) = max
y∈P (1)

y2 and W2(1) = min
y∈P (1)

y2. (4)

Note that both B2(1) and W2(1) are well defined due to the compactness
of P (1) in R2.

In NG(1), player 1’s proposal (b, 1−b) can be a SPE outcome if and only
if 1− b ∈ [W2(1), B2(1)]. The following strategy profile constitutes a SPE
that supports such an equilibrium outcome: Player 1 proposes (b, 1 − b),
and player 2 will accept. If player 1 demands more than b then player 2 will
reject and in G the players will play the SPE in which player 2’s payoff is
B2(1), to punish player 1. If player 2 rejects player 1’s offer (b, 1− b), then
the two players will play the SPE from which player 2’s payoff is W2(1),
to punish player 2. Player 1 has no incentive to deviate by demanding
more in his proposal since such a proposal will be rejected (as player 2’s
payoff from rejection is B2(1) ≥ 1 − b) and player 1’s payoff will be less
than 1−B2(1) ≤ b. Player 2 has no incentive to reject player 1’s proposal
(b, 1 − b) either as player 2’s payoff from rejection is W2(1) which is less
than 1 − b. Therefore, any convex combination of (1 − B2(1), B2(1)) and
(1−W2(1),W2(1)) is a SPE payoff vector in NG(1). Player 1’s and player
2’s lowest SPE payoffs in NG(1) are, respectively,

L1(1) = 1−B2(1) and L2(1) = W2(1). (5)

Other than the efficient SPE outcomes described above, NG(1) may
also have inefficient SPE outcomes. If there is a Nash equilibrium a∗, i.e.,
u(a∗) ∈ P (1), such that ui(a∗) ≥ Li(1) for i = 1, 2, then u(a∗) is a
SPE outcome in NG(1). Consider the following strategy profile in NG(1):
Player 1 offers player 2 less than L2(1), player 2 rejects, and then the two
players will play a∗ in G. If player 1 offers player 2 no less than L2(1),
player 2 accepts only if his share is not less than B2(1), and then the two
players will play the SPE of G that gives player 2 B2(1) after player 2’s
rejection. For subgame perfection of the strategy profile, consider that if
player 1 offers player 2 more than L2(1), player 2’s payoff from rejection
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will be B2(1) so player 2 will accept only if his share is not less than B2(1).
This implies that player 1’s payoff cannot be higher than L1(1) by offering
player 2 more than L2(1), which certainly makes player 1 worse off than
by following the prescribed strategy profile. On the other hand, if player 1
does not deviate, player 2’s payoff from accepting player 1’s proposal will
be less than L2(1) which is less than u2(a∗). Therefore, neither player will
deviate from the prescribed strategy profile. In this SPE, the two players
do not reach an agreement and then play a∗ in G.

Hence, given P (1), the set of SPE payoffs in NG(1) is

Q(1) = Co[ (L1(1), 1− L1(1)), (1− L2(1), L2(1)) ]
⋃

P (1)
⋂

Co[ (L1(1), 1− L1(1)), (1− L2(1), L2(1)), (L1(1), L2(1)) ].(6)

Note that Q(1) = Co[ (L1(1), 1−L1(1)), (1−L2(1), L2(1)), (L1(1), L2(1)) ]
if players are allowed to make inefficient proposals, i.e., (b1, b2) with b1 +
b2 < 1.

For T > 1, the negotiation game NG(T ) can be treated as a one period
negotiation game with the disagreement game GNG(T ) and a total sur-
plus of T . Let Q(T ) and P (T ) be the sets of SPE payoffs in NG(T ) and
GNG(T ), respectively. Q(T ) and P (T ) are defined by backward induction
based on Q(T − 1), the set of SPE payoffs in the last T − 1 periods of
NG(T ), which is NG(T − 1).

Given Q(T − 1), for i = 1, 2, denote the players’ lowest SPE payoffs in
NG(T − 1) as, respectively,

L1(T − 1) = min
(y1,y2)∈Q(T−1)

y1 and L2(T − 1) = min
(y1,y2)∈Q(T−1)

y2 (7)

In GNG(T ), a SPE payoff vector must have the form of u(a)+ (y1, y2) for
some (y1, y2) ∈ Q(T − 1). The necessary and sufficient condition for the
two players to play a ∈ A and (y1, y2) to be a SPE in GNG(T ) is

max
a′i∈Ai

ui(a′i, aj) + Li(T − 1) ≤ ui(a) + yi, for i, j = 1, 2, and i 6= j (8)

Inequality (8) states that player i’s payoff by deviating from ai, the sum
of player i’s best one-shot payoff in G and his lowest equilibrium payoff in
the last T −1 periods as the punishment, is not more than player i’s payoff
if player i plays ai followed by a payoff of yi. Hence the set of SPE payoffs
in GNG(T ) is

P (T ) =
{

u(a) + (y1, y2) | (y1, y2) ∈ Q(T − 1) and for i, j = 1, 2, i 6= j,

max
a′i∈Ai

ui(a′i, aj) + Li(T − 1) ≤ ui(a) + yi

}
. (9)
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Given P (T ), player i’s worst and best SPE payoffs in GNG(T ) are given
by, respectively

Wi(T ) = min
y∈P (T )

yi and Bi(T ) = max
y∈P (T )

yi.

To find Q(T ), we need to identify the player who makes a proposal in the
first period of NG(T ). Recall that player 1 makes a proposal in the last
period. In the first period of NG(T ), player 1 makes the proposal when T
is odd, and player 2 makes the proposal when T is even.

First consider the case that T is odd. As in the last period of the ne-
gotiation game, player 2’s SPE payoffs in GNG(T ) determine the set SPE
payoffs in NG(T ). Any proposal (b, 1 − b) where player 2’s total share in
the T periods T (1 − b) is between W2(T ) and B2(T ) can be supported as
a SPE outcome in NG(T ). Suppose player 1 makes such a proposal and
player 2 accepts. If player 1 deviates then player 2 will accept only if his
share is not less than B2(T ) and the players will play a SPE in GNG(T )
in which player 2’s payoff is B2(T ). If player 2 deviates (rejects) then
the players will play a SPE where player 2’s payoff in GNG(T ) is W2(T ).
Therefore, any payoff vector in the convex hull of (T −B2(T ), B2(T )) and
(T − W2(T ),W2(T )) can be supported as a SPE outcome. In addition,
NG(T ) may have inefficient SPE outcomes. Any outcomes in P (T ) in
which player 1 receives more than T − B2(T ) and player 2 receives more
than B2(T ) can be supported by a SPE. The set of SPE payoffs in NG(T )
is therefore

Q(T ) =

Co[ (L1(T ), 1− L1(T )), (T − L2(T ), L2(T )) ]
⋃

P (T )
⋂

Co[ (L1(T ), 1− L1(T )), (T − L2(T ), L2(T )), (L1(T ), L2(T )) ], (10)

where Li(T ) is player i’s lowest SPE payoff in NG(T ),

L1(T ) = T −B2(T ) and L2(T ) = W2(T ). (11)

By symmetry, when T is even, player 2 makes the offer in the first period
of NG(T ). Then Q(T ) is given by (10) with

L1(T ) = W1(T ) and L2(T ) = 1−B1(T ). (12)

Equations (9)—(12) give the set of SPE payoffs in NG(T ) by backward
induction. Note that both P (T ) and Q(T ) are formulated in terms of
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players’ total payoffs. This backward induction argument is different from
those in Benôit and Krishna (1985, 1992), and Wen (1996), due to the
bargaining structure in the negotiation model. In order to characterize the
limiting behavior of SPE payoffs in a finite horizon negotiation game as
the game horizon goes to infinity, we will study the limit of the average
SPE payoffs, Q(T )/T or P (T )/T , under the Hausdorff metric as the game
horizon T goes to infinity.

From (9)—(12), it is straightforward to show the following facts:

1. Both P (T ) and Q(T ) are compact and

Q(T )
T

⊂ Co[ (0, 1), (0, 0), (1, 0) ] and
P (T )

T
⊂ Co[ (0, 1), (0, 0), (1, 0) ].

2. For any even T ′ and any T , we have

P (T ) + Q(T ′) ⊂ P (T + T ′) and Q(T ) + Q(T ′) ⊂ Q(T + T ′),

and hence for i = 1, 2,

Wi(T ) + Li(T ′) ≥ Wi(T + T ′) and Li(T ) + Li(T ′) ≥ Li(T + T ′).(13)

3. If G has a unique Nash equilibrium payoff vector, then P (T ) and Q(T )
are singletons for all T . In fact, Q(T )/T = P (1).

The fact that both P (T ) and Q(T ) are compact implies that players
worst or lowest SPE payoffs are well defined. (13) states that Li(T ) is sub
additive hence L1(T )/T has a limit as T goes to infinity. Lastly, if the
player who responds to the proposal in the last period has a unique Nash
equilibrium payoff in G then the negotiation game will have a unique SPE
outcome in the last period. If the player who responds in the second last
period also has a unique Nash payoff in G will NG(T ) have a unique SPE
outcome for all finite T . In the rest of this paper, we will consider the
case when at least one player has distinct Nash payoffs in the disagreement
game G. In other words, G has recursive distinct Nash payoffs.

4. SPE WITH NASH DISAGREEMENT OUTCOMES

Before analyzing all SPE outcomes in NG(T ), we first consider a sim-
ple class of SPE in which players only play Nash disagreement outcomes.
Players therefore have no incentive to deviate in the disagreement game
if their continuation payoffs do not depend on their current disagreement
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actions. Their proposal and response strategies are uniquely determined
by the future disagreement outcomes. First, Proposition 1 provides the
unique acceptable proposal when disagreement outcomes are exogenously
given. The results of Proposition 1 will subsequently be used to study SPE
with Nash disagreement outcomes.

Proposition 1. Let at be the disagreement outcome in period t for t =
1, · · · , T . Then Q(T ) = {(V1(T ), V2(T ))} where, V1(0) = V2(0) = 0 and

V2(t) = u2(a
T−t+1) + δV2(t− 1), V1(t) = t− V1(t) for odd t ≤ T, (14)

V1(t) = u1(a
T−t+1) + δV1(t− 1), V2(t) = t− V2(t) for even t ≤ T. (15)

Proof. Consider the following strategy profile: In period T − t + 1 the
proposing player proposes (V1(t), V2(t)). This leaves the responding player
indifferent between rejection and acceptance, while the proposing player
will claim all the residual surplus, as shown by the equations in the proposi-

tion.

Proposition 1 implies that the player who makes the last proposal (player
1) has a bargaining advantage in the finite horizon negotiation game. When
the disagreement outcome is fixed at u(a) for all periods, then as the game
horizon goes to infinity the two players will equally share the residual value
1 − u1(a) − u2(a) in addition to their disagreement payoff u(a) per pe-
riod. So player i’s average payoff converges to ui(a)+ [1−u1(a)−u2(a)]/2.
Proposition 1 corresponds to the stationary SPE outcome in the infinite
horizon negotiation model as players are sufficiently patient. Also as in the
infinite horizon model, the SPE proposals depend on only the responding
players’ disagreement payoffs. Since the proposing player proposes the re-
sponding player’s continuation payoff after rejection, the proposing player’s
disagreement payoff is not relevant. Finally note that the existence of Nash
equilibrium in G guarantees the existence of SPE in the negotiation game
NG(T ).

We now study SPE with Nash disagreement outcomes. By Proposition
1, we have

Proposition 2. Let at be a Nash equilibrium of G for all t = 1, · · · , T .
Then NG(T ) has a SPE with payoff vector (V1(T ), V2(T )), where V1(T )
and V2(T ) are given by (14) and (15).

Proof. Consider the following strategy profile: The proposing player in
period t proposes (V1(t), V2(T )), and the responding player will accept a
proposal only if his share is not less than that in (V1(t), V2(T )). After a
rejection in period t (which will never happen in the SPE), the two players
will play the Nash equilibrium at during period t for t = 1, · · · , T .
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During the disagreement game in any period, a player’s continuation
payoff after the disagreement game does not depend on the disagreement
outcome in the current period. Therefore, neither player will deviate in the
disagreement outcome, since at itself is a Nash equilibrium outcome in G.
Since the two players do play the Nash outcome at of G in period t, neither
player will deviate from their proposing or responding strategies, as Propo-
sition 1 shows.

Proposition 2 describes all the SPE payoffs with Nash disagreement out-
comes. Recall that Bi(1) and Wi(1) are player i’s best and worst Nash
payoffs in G, respectively. The Nash-based punishment outcomes are ob-
tained if the two players play the punisher’s best Nash outcome when the
punishee proposes, and the punishee’s worst Nash equilibrium outcome
when the punisher proposes. Because of the two-period cyclic structure of
the disagreement outcomes, we are able to provide the closed form solutions
of the SPE outcomes in terms of the players’ disagreement payoffs.

Proposition 3. In NG(T ), player i’s worst SPE with Nash disagree-
ment outcomes is (V i

1 (T ), V i
2 (T )), where V i

1 (T ) + V i
2 (T ) = T and

V 1
1 (T ) =

{
(K + 1)[1−B2(1) + W1(1)]−W1(1) for odd T = 2K + 1,

K[1−B2(1) + W1(1)] for even T = 2K,
(16)

V 2
1 (T ) =

{
(K + 1)[1−W2(1) + B1(1)]−B1(1) for odd T = 2K + 1,

K[1−W2(1) + B1(1)] for even T = 2K.
(17)

Proposition 3 implies that player 2 payoffs are

V 1
2 (T ) =

{
K[1 + B2(1)−W1(1)] + B2(1) for odd T = 2K + 1,
K[1 + B2(1)−W1(1)] for even T = 2K, (18)

V 2
2 (T ) =

{
K[1 + W2(1)−B1(1)] + W2(1) for odd T = 2K + 1,
K[1 + W2(1)−B1(1)] for even T = 2K. (19)

Now note that in the disagreement game G every player’s gain from a
one shot deviation is finite. Denote the maximum one-shot gain from a de-
viation in G by any player as D, where D is finite. When the disagreement
game G has multiple Nash equilibrium payoffs for at least one player, we
know that B1(1) + B2(1)−W1(1)−W2(1) > 0. Therefore by Proposition
3, we have

Proposition 4. ∀ T ∗ > 0, ∃ T0 such that ∀ T ≥ T0

V 2
1 (T )− V 1

1 (T ) > T ∗ ·D and V 1
2 (T )− V 2

2 (T ) > T ∗ ·D. (20)
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Proof. For either an odd T = 2K + 1 or an even T = 2K, due to the
fact that B1(1) + B2(1)−W1(1)−W2(1) > 0, (16) and (17) imply that

V 2
1 (T )− V 1

1 (T ) ≥ K[B1(1) + B2(1)−W1(1)−W2(1)].

Choose T0 = 2K so that K[B1(1) + B2(1) − W1(1) − W2(1)] ≥ T ∗ · D.
Then the first inequality in (20) holds. Similarly, (18) and (19) imply that

V 1
2 (T )− V 2

2 (T ) ≥ K[B1(1) + B2(1)−W1(1)−W2(1)].

Therefore, the second inequality of (20) holds as well for the same T0.

Proposition 4 implies that SPE with Nash disagreement outcomes are
sufficient to enforce any disagreement outcome in G for a given number of
T ∗ periods, as the two inequalities in (20) show. Since the set of SPE with
Nash disagreement outcomes is a subset of the set of SPE outcomes in the
negotiation game NG(T ), we must have Li(T ) ≤ V i

i (T ).

5. OPTIMAL PUNISHMENTS

In this section we investigate players’ optimal punishments in NG(T )
and compare them to their lowest SPE payoffs in the corresponding nego-
tiation game with infinite horizon. In the corresponding infinite horizon
negotiation game, a player’ lowest possible disagreement payoff is his mini-
max value in the disagreement game, which is 0 by assumption. A player’s
highest effective disagreement payoff is his highest disagreement payoff after
compensating the other player with his best one-shot gain from deviation.
From Busch and Wen (1995), player i’s highest effective disagreement pay-
off wi is defined as, for i, j = 1, 2 and i 6= j,

wi = max
a∈A

[
ui(a)−

(
max
a′j∈Aj

uj(a′j , ai)− uj(a)

)]

= max
a∈A

[
u1(a) + u2(a)− max

a′j∈Aj

uj(a′j , ai)

]
. (21)

Note that Wi(1) ≥ 0 (player i’s minimax value in G) and Bi(1) ≤ wi

for i = 1, 2. In the finite horizon negotiation game, player i’s optimal
punishment is also determined by wj and player i’s minimax value of 0.

Proposition 5. In NG(T ),

L1(T ) ≥ 1− w2 + L1(T − 1) and L2(T ) = L2(T − 1) if T is odd, (22)

L2(T ) ≥ 1− w1 + L2(T − 1) and L1(T ) = L1(T − 1) if T is even. (23)
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Proof. Due the similarity of (22) and (23), we will prove (22) only.
When T is odd, player 1 makes the first offer in NG(T ). Recall that
L1(T ) = T −B2(T ) from (11).

From the definition of B2(T ) and (9), we have

B2(T ) = max
a∈A

[u2(a) + y2] s.t.u(a) + y ∈ P (T ) (24)

≤ max
a∈A

[u2(a) + y2] s.t.u1(a) + y1 ≥ max
a′1∈A1

u1(a
′
1, a2) + L1(T − 1).(25)

Since (y1, y2) ∈ Q(T −1), y1 +y2 ≤ T −1 and the constraint in (25) imply
that

y2 ≤ T − 1− y1 ≤ T − 1− L1(T − 1) + u1(a)− max
a′1∈A1

u1(a′1, a2). (26)

Substituting (26) into (25), we have (note that T − 1 − L1(T − 1) is a
constant),

B2(T ) ≤ max
a∈A

{
u2(a) + u1(a)− max

a′1∈A1

u1(a′1, a2)
}

+ T − 1− L1(T − 1)

= w2 + T − 1− L1(T − 1). (27)

Then (24) and (27) yield the first part of (22).
On the other hand, W2(T ) = L2(T − 1) of (11) since the two players can

play the minimax action profile against player 2 after player 2’s first rejec-
tion. This concludes the proof.

Proposition 5 corresponds to Proposition 2 in Busch and Wen (1995).
It shows that any player will receive at least his minimax disagreement
payoff after rejecting the other player’s proposal, and at most his highest
effective disagreement payoff after his proposal is rejected. Together with
Proposition 5, Proposition 6 below asserts that a player’s average payoff in
his optimal punishment in NG(T ) is not less than that in the negotiation
game with an infinite horizon when the two players are sufficiently patient
[(1 − w2)/2 for player 1 and (1 − w1)/2 for player 2, see Busch and Wen
(1995)].

Proposition 6. For all K,

L1(2K + 2) = L1(2k + 1) ≥ K(1− w2) + L1(1), (28)
L2(2K + 3) = L2(2k + 2) ≥ K(1− w1) + L2(2). (29)

Player 1’s and 2’s average SPE payoffs in NG(T ) are not less than (1 −
w2)/2 and (1− w1)/2 in the limit as T goes to ∞, respectively.
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Proof. For player 1 and an odd T = 2K + 1 (so T + 1 = 2K + 2), by
(22) and (23) from Proposition 5, we have,

L1(2K + 2) = L1(2K + 1) ≥ (1− w2) + L1(T − 2)
≥ 2(1− w2) + L1(T − 4) ≥ · · · ≥ K(1− w2) + L1(1),

which is (28). (29) is proven similarly.
The second part of the proposition can be shown by backward induction.

Alternatively, from the definition of w2, B2(1) < w2 implies that L1(1) =
1−B2(1) ≥ 1− w2. Together with (28), we have

L1(2K + 1)
2K + 1

≥ K + 1
2K + 1

(1− w2) → 1− w2

2
,

L1(2K + 2)
2K + 2

≥ K + 1
2K + 2

(1− w2) → 1− w2

2
.

Since L2(0) = 0 and so L2(2) ≥ 1− w1, by (29), we have

L2(2K + 2)
2K + 2

≥ K + 1
2K + 2

(1− w1) → 1− w1

2
,

L2(2K + 3)
2K + 3

≥ K + 1
2K + 3

(1− w1) → 1− w1

2
.

Note that Li(T )/T is player i’s lowest average SPE payoff in NG(T ).

The results of Proposition 6 suggest that the set of average SPE pay-
offs in the game with a finite horizon must be a subset of that with the
infinite horizon when players are sufficiently patient. Proposition 7 shows
that the limits in Proposition 6 can be approximated arbitrarily closely by
SPE outcomes when the game has a sufficiently long horizon. Due to the
similarity of the argument, we will only investigate a SPE to approximate
player 1’s optimal punishment in the limit as T goes to the infinity.

Proposition 7. ∀ ε > 0, ∃ T1 such that ∀ T ≥ T1, NG(T ) has a SPE
in which player 1’s average payoff is ε close to (1− w2)/2.

Proof. Let a1 be an outcome that solves for w2 and m1 be a minimax
action profile against player 1 in the disagreement game G. By Propositions
5 and 6, without loss of generality, there is an even T0 such that V 1(T0) ∈
Q(T0) and V 2(T0) ∈ Q(T0), where both V 1(T0) and V 2(T0) are on the
bargaining frontier, and V 1

1 (T0) < V 2
1 (T0). For i = 1 and 2, V i(T0) will be

used as player i’s punishment in the last T0 periods in our construction.
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Then every convex combination of V 1(T0) and V 2(T0) is also in Q(T0). In
particular, V (T0) ∈ Q(T0) where

V1(T0) = V 1
1 (T0) + max

a′1∈A1
u1(a

′
1, a

1
2)− u1(a

1) and V2(T0) = T0 − V1(T0). (30)

In GNG(T0 + 1), U(T0 + 1) = u(a1) + V (T0) ∈ P (T0 + 1) since (30)
yields

U1(T0 + 1) = max
a′1∈A1

u1(a′1, a
1
2) + V 1

1 (T0) ≥ max
a′1∈A1

u1(a′1, a
1
2) + L1(T0),

and for the sufficiently large T0, player 2 will not deviate either when the
difference between V2(T0) and V 2

2 (T0) is large enough. Recall that T0 + 1
is odd. Then V (T0 + 1) ∈ Q(T0 + 1) where,

V1(T0 + 1) = T0 + 1− V2(T0 + 1) and V2(T0 + 1) = U2(T0 + 1).

Since B2(1) ≤ w2 = u1(a1) + u2(a1)−maxa′1∈A1 u1(a′1, a
1
2), we have

V1(T0 + 1) = T0 + 1− V2(T0 + 1)
= T0 + 1− u2(a1)− V2(T0)
= T0 + 1− u2(a1)− T0 + V1(T0)
= V 1

1 (T0) + 1− w2

≤ V 1
1 (T0 + 1).

Thus V2(T0 + 1) ≥ V 1
2 (T0 + 1).

Now, suppose that for an even T we have V (T0+T ) ∈ Q(T0+T ) such that
V2(T0+T ) ≥ V 1

2 (T0+T ) and U(T0+T +1) = u(a1)+V (T0+1) ∈ P (T0+1).
Then V (T0 + T + 1) ∈ Q(T0 + T + 1) where,

V2(T0 + T + 1) = U2(T0 + T + 1) and
V1(T0 + T + 1) = T0 + T + 1− V2(T0 + T + 1).

Since B2(1) ≤ w2 = u1(a1) + u2(a1)−maxa′1∈A1 u1(a′1, a
1
2), we have

V1(T0 + T + 1) = T0 + T + 1− V2(T0 + T + 1)
= T0 + T + 1− u2(a1)− V2(T0 + T )
= T0 + T + 1− u2(a1)− T0 − T + V1(T0 + T )
= V 1

1 (T0 + T ) + 1− w2

≤ V 1
1 (T0 + T + 1).
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Thus V2(T0 + T + 1) ≥ V 1
2 (T0 + T + 1).

Now, suppose that for an odd T we have V (T0 + T ) ∈ Q(T0 + T ) such
that V2(T0 +T ) ≥ V 1

2 (T0 +T ). Hence U(T0 +T +1) = u(m1)+V (T0 +T ) ∈
P (T0 + 1). Therefore, V ∗(T0 + T + 1) ∈ Q(T0 + T + 1) where

V ∗
1 (T0 + T + 1) = U1(T0 + T + 1) = V1(T0 + T ),

V ∗
2 (T0 + T + 1) = T0 + T + 1− V ∗

1 (T0 + T + 1).

Since w1 ≥ u1(m1) = 0

V ∗
1 (T0 + T + 1) = V1(T0 + T ) ≤ V 1

1 (T0 + T + 1).

Thus V ∗
2 (T0 + T + 1) ≥ V 1

2 (T0 + T + 1). Every convex combination of
V ∗(T0 + T + 1) and V 2(T0 + t + 1) is in Q(T0 + T + 1). In particular
V (T0 + T + 1) ∈ Q(T0 + T + 1) where

V1(T0 + T + 1) = V ∗
1 (T0) + max

a′1

u1(a′1, a
1
2)− u1(a1),

V2(T0 + T + 1) = T0 + T + 1− V1(T0).

By induction, ∀ T , we have V (T0 + T ) ∈ Q(T0 + T ). That is, V (T0 + T )
is a SPE payoff vector, such that for an odd T = 2K +1 and even T = 2K,
we have

V1(T0 + 2K + 1)
T0 + 2K + 1

=
K(1− w2) + V1(T0 + 1)

T0 + 2K + 1
,

V1(T0 + 2K)
T0 + 2K

=
K(1− w2) + V1(T0)

T0 + 2K
.

It is then straightforward from the last two equations that V1(T )/T con-
verges to (1− w2)/2 as T →∞, or equivalently K →∞, which concludes
the proof of Proposition 7.

6. THE MAIN PROPOSITION

Now we are ready to present our main result, Proposition 8, which char-
acterizes the limiting set of average SPE payoffs as the horizon goes to
infinity. Any SPE payoff vector of the negotiation game with infinite hori-
zon when players are sufficiently patient can be approximated by a SPE in
the corresponding finite horizon negotiation game with a sufficiently long
horizon.
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Propositions 6 and 7 imply that Q(T )/T is a closed subset of F , and its
limit is a subset of set Q, where

Q = Co

[(
1− w2

2
,
1 + w2

2

)
,

(
1 + w1

2
,
1− w1

2

)
,

(
1− w2

2
,
1− w1

2

)]
. (31)

Our main proposition states that every payoff vector in Q can be approxi-
mated by an average SPE payoff in NG(T ) for a large enough T . Therefore,
Q is the limit of Q(T )/T in the Hausdorff metric as T goes to infinity.

Proposition 8. Every payoff vector in Q can be approximated by the
average payoff vector of a SPE in NG(T ) when T is large enough.

Proof. We will prove Proposition 8 by contradiction. Suppose there
exists a payoff vector z∗ ∈ Q that cannot be approximated by a SPE in
NG(T ) even for a large enough T . Then ∃ ε∗ > 0 such that ∀ T , ∃ T0 ≥ T
such that NG(T0) has no SPE whose payoff is within 3ε∗ of z∗. Choose
another feasible payoff vector z ∈ Q within 2ε of z∗ such that for ε ≤ ε∗,

1− wj

2
+ 3ε ≤ zi for and i 6= j. (32)

By construction, NG(T0) has no SPE whose average payoff vector is within
ε of z. (32) states that player i’s payoff in z is at least 3ε higher than the
limit of his optimal punishment SPE payoff.

Let z be a convex combination of u(a) and (b, 1 − b) such that u(a) <
(b, 1− b), where (b, 1− b) can be supported as a SPE in NG(T ) for T ≥ T0

and

Li(T )− 1− wi

2
< ε and T · ε ≥ D, (33)

where D is a player’s highest one-shot gain by deviating in G,

D = max
i

{
max
a′i∈Ai

[ui(a′i, aj)− ui(a)]
}

.

By our assumptions on the disagreement game G, D is finite. The first
condition in (33) requires that player i’s optimal punishment SPE payoff is
within ε of its limit, as guaranteed by Proposition 7. The second condition
of (33) requires that a player’s loss of ε per period from being punished for
T periods out-weighs any possible one-shot deviation gain.

Since z is a convex combination of u(a) and (b, 1 − b), for ε > 0, ∃ T ∗

such that ∀ T ≥ T ∗, we have T = T1 + T2 such that T1 > T0 and

T2u(a) + T1(b, 1− b)
T

(34)
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is within ε of z. In the rest of this proof, we will show that T2u(a)+T1(b, 1−
b) ∈ Q(T ) by induction. It is easy to see that u(a)+T1(b, 1−b) ∈ Q(T1+1).

Now suppose that tu(a) + T1(b, 1− b) ∈ Q(T1 + t) for t < T2.

tu1(a) + T1(b, 1− b)
T1 + t

≥ z − ε (35)

≥
(

1− w2

2
,
1− w2

2

)
+ 2ε (36)

≥ (L1(T1 + t), L2(T1 + t))
T1 + t

+ ε. (37)

(35) is due to the fact that u(a) � (b, 1− b), (36) is due to (32) and (37)
is due to (33). Therefore, (33) implies that neither player will deviate in
G from a, when tu(a) + T0(b, 1 − b) will be followed. Hence (t + 1)u(a) +
T1(b, 1− b) ∈ P (T1 + t + 1). Then

(t + 1)u(a) + T1(b, 1− b) > [L1(T1 + t + 1), L2(T1 + t + 1)]

implies that (t+1)u(a)+T1(b, 1−b) ∈ Q(T1 + t+1). By induction, (34) is
in Q(T )/T . However, this contradicts the supposition that there is no SPE
whose average payoff vector is within ε of z, which concludes the proof.

As the game horizon goes to infinity, the set of average SPE payoffs in the
negotiation game converges to that in the corresponding negotiation game
with an infinite horizon as long as at least one player has distinct Nash
equilibrium payoffs in the disagreement game. For a two-player game, this
requirement is equivalent to requiring that the game satisfy the recursive
distinct Nash equilibrium payoffs condition of Smith (1995). Therefore,
the necessary condition for the Folk Theorem in finitely repeated games
is also necessary for our finite horizon negotiation game to have multiple
SPE outcomes. If every player has a unique Nash equilibrium payoff in
the disagreement game, then the finite horizon negotiation game will have
a unique SPE. However, the corresponding infinitely repeated negotiation
game will only have a unique SPE if and only if wi = 0 for i = 1, 2, which
is a stronger condition. The condition that at least one player has distinct
Nash disagreement payoffs implies that at least one wi > 0 for either i = 1
or 2.
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