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A series of GARCH models are investigated for the volatility of the Chinese
equity data from the Shenzhen and Shanghai markets. There has been empir-
ical evidence of volatility clustering, contrary to findings in previous studies.
Each market contains different GARCH models which fit well. The models
are used to test for a spill-over effect between the two Chinese markets, an
example of volatility transmission within one country and between two eq-
uity exchanges. Our testing suggests that there is no volatility transmission
between the two markets. c© 2004 Peking University Press
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1. INTRODUCTION

The relatively new Chinese stock markets show encouraging trends, with
the number of Chinese people buying shares estimated to be about 60 mil-
lion at the end of 2000.1 Furthermore, after being accepted as a member of
the World Trade Organization in November 2001, China should be opening

1www.stockstar.com/statistics
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its domestic stock market to international capital in a few years time and,
as a result, is likely to become an important player in the future global
financial market.

No doubt that there will be a variety of studies of various aspects of the
Chinese stock market by the global investment community and academia.
In this paper we take a look at two important aspects of this market.
First, because return volatility (simply volatility hereafter) is a key input
for pricing financial products and asset allocation decisions, we look at this
parameter for the Chinese equity market. In many studies such as those
by French, Schwert, and Stambaugh (1987), Chou (1988), Akgiray (1989),
Baillie and DeGennaro (1990), Kim and Kon (1994), there is evidence that
GARCH models are able to model stock returns displaying volatility clus-
tering in some international stock markets.2 In this paper we use GARCH
modeling for estimating volatility since it can take into account various
characteristics of the data.

Secondly, we investigate whether there is any transmission process of
volatility between China’s two equity exchanges, Shenzhen and Shanghai.
This transmission process of volatility is referred to in literature as the
volatility spill-over effect and it has been studied in literature between
different countries. If real, this phenomenon can have a major impact
on asset pricing and may lead to arbitrage opportunities. There is no
investigation, as far as we are aware, into volatility transmission between
different stock exchanges within the same country.

In addition, it is worth mentioning the comparative time series analysis
of the Shanghai and the New York stock exchange composite price indices,
weekly rates of return, and volatilities over the period of 1992-2002 as
described by Chow and Lawler (2003). They show that the volatilities are
significantly negatively correlated, with each market’s volatility Granger
causing volatility on the other market. International investors can therefore
diversify better their portfolios by including such emerging markets. The
benefits of diversification on emerging markets is also extensively discussed
by Bekaert and Harvey (1997).

Even more fundamental is the question of how to model the volatility
on each exchange and what type of GARCH model is more suitable for
each market. Will the same type of model or different model(s) emerge?
These questions have a profound implication for investment decisions and
risk management.

This paper deals mainly with the volatility data on the two Chinese stock
exchanges and is organized as follows. In Section 2 we provide a series
of GARCH models that are investigated for the two markets. Section 3
contains empirical evidence for the Shenzen and Shanghai exchanges while

2Bollerslev et al. (1992) provide a detailed survey of GARCH modeling.
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Section 4 tests whether there is a spill-over effect between the Shanghai
and Shenzhen markets. The last section summarizes our conclusions.

2. MODELING VOLATILITY FOR CHINESE EQUITY
MARKETS

The analysis is done using the econometric package PcGive10.0 for GARCH
modeling.3 The data used for estimation of GARCH models are the time
series of daily closing prices of the index on the Shanghai and Shenzhen
Stock Exchanges obtained from Datastream. The sample period is from
November 1, 1992 to November 1, 2001, with a total of 2,349 observations
for each of the two markets. The daily returns were calculated as the change
in the logarithm of closing prices of successive days: Rt = ln(St)−ln(St−1).

Akgiray (1989) notes that if a return series represented by Rt = ln
(

St

St−1

)
can be regarded as a white noise process (with the implication that the
share price is a pure random walk), the series should be identically and
independently distributed with a zero mean and constant variance. More-
over, the series of absolute and squared values of Rt are also supposed to
show a lack of autocorrelation. Although Song, and Romilly (1997) found
that the two Chinese market returns series followed a random walk process,
the results of our analysis presented here indicate that the series of returns
on indices of both Chinese markets are not pure white noise.

FIG. 1. Time series of daily returns for two markets
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The spikes in Figure 1 suggest that the daily return series are not random
walk processes, and that there exists significant volatility clustering. The

3See Doornik and Hendry (2001) and Hendry and Doornik (2001).
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presence of serial correlation is implicit from the correlogram of actual and
squared returns in Figure 2.

FIG. 2. The correlogram of actual and squared returns
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Whereas the autocorrelations of the daily returns are close to zero (see
the upper part of Figure 2), the correlogram of the squared returns shows
quite a different picture (see the lower part of Figure 2), with clear signs
of serial correlation; this is especially true for the Shenzhen Exchange.
There also appears to be some seasonality since at 6 and 11 periods the
autocorrelation is higher; this may correspond to the 5-day working week
cycle. This suggests that the Shanghai and Shenzhen price index time series
can at most be regarded as a martingale process and the corresponding
return series as martingale differences. For a martingale difference process,
even if past observations contain no information for prediction, it may
be possible to construct a non-linear model such that the non-linearity is
captured in higher order moments?variance in this case. Thus, volatility
models such as GARCH(1, 1) may be successfully used for assessing the
return volatilities of share prices in a financial market.

Some earlier studies on daily stock returns, such as Mandelbrot (1963,
1967) and Fama (1965), emphasized that the distribution of stock returns
often exhibit leptokurtosis, skewness, and volatility clustering, all in con-
trast to the properties of an independent and identical Gaussian distri-
bution. The statistical evidence presented in Table 1 shows that Chinese
stock returns are also not normally distributed.

The descriptive statistics for the two price index returns are the (1) mean,
(2) standard deviation, (3) first to twelfth order autocorrelation coefficients,
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TABLE 1.

Descriptive statistics for the market price indices, R1 and R2 are the
log returns of the Shenzhen and Shanghai exchanges respectively

Statistics R1 R2 |R1| |R2| R2
1 R2

2

Mean 0.00032601 0.00054054 0.016221 0.016487 0.00067895 0.00081688

SD 0.026055 0.028576 0.020392 0.023346 0.0029376 0.0039704

ρ1 0.0019213 −0.0028246 0.30978 0.32575 0.10241 0.13135

ρ2 0.038010 0.036613 0.35209 0.37611 0.20869 0.30395

ρ3 0.023184 0.091858 0.30652 0.31720 0.20186 0.21159

ρ4 0.082076 0.045480 0.26711 0.28463 0.10744 0.18528

ρ5 0.010766 0.031429 0.23742 0.21929 0.074198 0.076805

ρ6 −0.060190 −0.054203 0.24060 0.25331 0.079906 0.14046

ρ7 −0.016232 −0.0080156 0.19206 0.22885 0.074836 0.12720

ρ8 −0.017404 −0.039664 0.17101 0.18699 0.030532 0.048750

ρ9 0.0053153 0.046499 0.14335 0.18429 0.014831 0.050689

ρ10 −0.048561 −0.068903 0.15646 0.21785 0.032720 0.080166

ρ11 −0.0055714 −0.088106 0.15832 0.21581 0.028623 0.072727

ρ12 0.048554 0.076931 0.12154 0.21125 0.012129 0.099236

Skewness 1.0716 1.8471

Kurtosis 16.989 21.764

Q(12) 36.89 40.23 379.85 332.14 158.45 96.13

Jarque-Bera 4985.2 6981.3

(4) skewness, (5) excess kurtosis, (6) the Ljung-Box Q(12) statistic for test-
ing the hypothesis that all autocorrelations up to lag 12 are jointly equal
to zero, and (6) the Jarque-Bera normality test statistic. For the absolute
and squared returns series, the skewness, kurtosis and normality statis-
tics are not applicable. The kurtosis, skewness and Jarque-Bera normality
statistics reported in the first two columns of Table 1 indicate that the null
hypothesis of a normal distribution can be rejected for both series.

The independence assumption in each of the series is tested by calculat-
ing the first to twelfth order autocorrelation coefficients. The Ljung-Box
Q(12) statistics for the cumulative autocorrelation up to twelfth-order au-
tocorrelation in the two return series are both greater than 21.02 (the 5%
critical value from a distribution with 12 degrees of freedom), suggesting
that the hypothesis of independence in daily returns should be rejected.
Furthermore, the autocorrelation coefficients and Ljung-Box Q(12) statis-
tic for the absolute and squared return series also indicate a very strong
autocorrelation. Overall, these results clearly support the rejection of the
hypothesis that the two Chinese time series of daily stock returns are time
series with independent daily values. Moreover, the statistics justify the
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use of the GARCH specification in modeling the volatility of the Chinese
stock markets.

3. GARCH MODELS FOR SHENZEN AND SHANGHAI
EXCHANGES

More formally the model we propose is given by

Rt = η +
r∑

i=1

θiRt−i + εt +
s∑

j=1

φjµt−j (1)

where Rt is the daily returns of a market index Rt = ln
(

St

St−1

)
and

µτΩt−1 ∼ N(0, ht).
Equation (1) represents the ARMA(r, s) process, and the conditional

variance of returns, ht, is then specified as:

ht = α0 +
q∑

j=1

αjµ
2
t−j +

p∑
i=1

βiht−i (2)

where the parameters in equation (2) should satisfy: α0 > 0, αi, βi > 0, i =
1, . . . , p, j = 1, . . . , q.

As suggested by Akgiray (1989), allowing the conditional variances to
depend on past-realized variances is consistent with the actual volatility
pattern of markets where there are both stable and unstable periods.

Engle, Lilien, and Robins (1987) found that an increase in risk (variance)
tends to result in higher expected returns in share prices. Therefore, the
GARCH in mean or GARCH-M model is a natural extension of the GARCH
model, since it introduces a conditional variance (or standard deviation)
term in equation (1):

Rt = η + λht +
r∑

i=1

θiRt−i + εt +
s∑

j=1

φjµt−j . (3)

The relationship between stock return volatility and the sign of stock
returns is also one of interest. It is argued by Engle and Ng (1993) that
the relationship has a negative sign; that is, when stock returns decrease
the volatility increases, and vice versa. This phenomenon is termed the
“leverage effect.” It may be modelled by the asymmetric volatility model
or threshold ARCH (or TAGARCH) model in which a multiplicative “in-
dicator” dummy variable is introduced to capture the influence of the sign
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of stock returns on the conditional variance:

ht = α0 +
q∑

j=1

αj(µ−t−jκ1)2 +
p∑

i=1

βiht−i + κ2µ
2
t−1I(µt−1 < κ1) (4)

where I(•) is the indicator function; κ1 is the asymmetry parameter and κ2

is threshold parameter. This specification allows the impact of the squared
errors on conditional volatility to be different according to the sign of the
lagged error terms.

The process of fitting the GARCH type models can start with the mean
equation (1) and the variance equation (2). The orders of the AR and
MA process in the mean equation (1) are determined by the partial au-
tocorrelation function (PACF) and the autocorrelation function (ACF) of
the return series of the Shanghai and Shenzhen exchanges, respectively.
The final GARCH specification is selected by looking at the properties
of standardized residuals, which are the conventional residuals divided by
their fitted conditional standard deviation. In order to retain the model,
the residuals should be independent and identically distributed with mean
zero and variance one.

For the data investigated here, the models TAGARCH(1, 1) for the
Shanghai exchange and GARCH(1, 1) for the Shenzhen exchange, with
the mean equations of ARMA(10, 10) for Shanghai and ARMA(8, 8) for
Shenzhen, fit the data well. Other models such as GARCH(p, q) with pa-
rameters p = 1, 2, . . . , 6 and q = 1, 2, . . . , 6 were also analyzed, but there
were no significant improvements in goodness-of-fit based on likelihood-
ratio tests and other statistics such as the standard deviation of the regres-
sion, the Akaike Information Criterion (AIC), and the Schwarz Criterion
(SC).

Now the effect of risk on returns can be analyzed using the GARCH(1, l)-
M model in which returns are assumed to be related to the conditional
standard deviation which is the square root of ht , as well as to the ARMA
terms. Table 2 presents the estimation results of various GARCH spec-
ifications, where I to III correspond to GARCH(1, 1), GARCH-M(1,1),
TAGARCH models, respectively. In the table the t-statistics are indicated
in parentheses; the ARCH of residuals is tested with the F -statistic and
the normality test of residuals is tested with a χ2 test.

The estimates of the GARCH(1, 1) model for Shenzhen exchange show
that, except for the constant mean model, all parameters in the mean and
variance models are statistically significant and the values of the estimated
parameters α0, α1 and β1 satisfy the constraints for GARCH stability. This
suggests that for the Shenzhen exchange, the main feature of the GARCH
model, the mean reversion of the variance rate is satisfied. For the Shang-
hai exchange, the sum of α1 and β1 is equal to unity in the first three
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GARCH models. Therefore, the two exchanges are integrated and a more
appropriate model would be an IGARCH(1, 1) model given by the equa-
tion:

E[ht+H ] = ht + α0 ×H (5)

This means that the expected conditional variance grows linearly with
the forecast horizon H. This point is illustrated in Figure 3 by estimating
a GARCH(1, 1) model and then forecasting 90 days into the future. The
results provide evidence that there is an exact linear relationship between
the expected conditional variance and our forecast horizon. Moreover, the
residuals become larger and larger with time, indicating that the return
time series will be more volatile because of the growing variance of the
future returns.

FIG. 3. Volatility Forecasts given by the fitted IGARCH (1,1) model
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The results of the ARCH test reported in Table 2 are used as a stepping
stone to show how well the GARCH models have eliminated the autoregres-
sive conditional heteroscedasticity. The null hypothesis is that the coeffi-
cients of the autoregressive model for the residuals are jointly equal to zero
and an F -test can be used. The information provided in Table 2 and Figures
4 and 5 indicates that the GARCH models employed, GARCH(1, 1) for the
Shenzhen exchange and TAGARCH(1, 1) for the Shanghai exchange, are
reliable in capturing the volatility dynamics on the Chinese markets. The
upper graphs in Figures 4 and 5 show the scaled residuals while the lower
two graphs show the correlograms indicating that the autocorrelations in
the squared residuals have indeed disappeared.

Another noticeable feature in Table 2 is that the normality test of resid-
uals of all the GARCH models failed. In this case, the distribution of
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TABLE 2.

Parameter estimates for GARCH of models

Shenzhen Shanghai

Parameter I II III IV I II III IV

ARMA

η 0.00049 −0.00092 0.00062 0.00090 0.00032 −0.00052 0.00032 0.00068

(0.902) (−0.791) (1.22) (1.83) (0.82) (−0.577) (0.777) (1.36)

θ3 0.072 0.081 0.085 0.080

(0.461) (0.468) (0.564) (0.513)

θ5 −0.215 −0.006 −0.280 −0.407

(−2.18) (−0.276) (−0.928) (−1.47)

θ6 −0.653 −0.554 −0.124 −0.158 −0.287 −0.334 −0.326 −0.335

(−6.07) (−21.7) (−0.378) (−0.51) (−2.26) (−2.66) (−3.12) (−3.51)

θ8 −0.211 −0.516 −0.487 −0.469 −0.247 −0.236 −0.213 −0.229

(−3.23) (−19.1) (−1.21) (−1.16) (−2.19) (−2) (−1.95) (−2.1)

θ10 0.0730 0.0698 0.0710 0.0721

(0.751) (0.583) (0.657) (0.733)

ζ3 −0.033 −0.031 −0.031 −0.030

(−0.225) (−0.187) (−0.212) (−0.206)

ζ5 0.243 0.015 0.322 0.462

(2.3) (0.549) (1.08) (1.58)

ζ6 0.603 0.516 0.028 0.068 0.293 0.293 0.284 0.295

(5.24) (15.6) (0.487) (0.204) (3.16) (2.3) (2.76) (3.19)

ζ8 0.203 0.520 0.487 0.465 0.195 0.196 0.175 0.190

(2.6) (15.3) (1.16) (1.11) (1.84) (1.71) (1.65) (1.82)

ζ10 −0.070 −0.067 −0.066 −0.069

(−0.822) (−0.607) (−0.657) (−0.813)

λ 0.059 0.079

(1.37) (1.22)

GARCH

α0 4.4E-05 4.4E-05 3.9E-05 4.4E-05 4.5E-06 4.6E-06 2.2E-06 4.5E-06

(3.54) (1.87) (1.91) (3.27) (2.8) 0.877 0.771 (2.81)

α1 0.203 0.203 0.126 0.219 0.080 0.081 0.066 0.080

(3.56) (2.66) (2.44) (4.09) 2.17

β1 0.747 0.747 0.745 0.733 0.920 0.919 0.926 0.920

(14.6) (7.33) (7.69) (15.1) (36.2) (17.5) 33 (36)

δ1 0.061 0.015

(1.55) (0.474)

κ1 −0.007 0.002

(−1.98) 0.506

κ2 0.265 0.032

(1.15) 0.741

ARCH-Test 0.088 0.091 0.131 0.108 0.104 0.220 0.301 0.213

χ2(2) 3832.2 3843.4 3468.2 3726.9 4072 3655 3363.6 3646.9

Log-like 5464.13 5464.30 5471.53 5468.95 5663.56 5664.55 5674.95 5663.24
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FIG. 4. Analytical Graphs for GARCH (1,1) in Shenzhen Exchange
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FIG. 5. Analytical Graphs for TAGARCH (1,1) in Shanghai Exchange
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residuals seems to be well approximated by a χ2 distribution and Figure
6 shows the estimated density of scaled residuals of GARCH(1, 1) for the
Shenzhen exchange and of TAGARCH(1, 1) for the Shanghai exchange.

Note that the scaled residuals {ε̂t} do not have a zero mean and there is
excess kurtosis clearly visible in the residual density plot. For comparison, a
normal distribution with the same mean and variance has much fatter tails.
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FIG. 6. The estimated density of scaled residuals of GARCH(1,1) in Shenzhen and
of TAGARCH(1,1) in Shanghai.

-6 -4 -2 0 2 4 6 8 10 12 14

0.2

0.4

0.6
r:Shanghai N(s=1.01) 

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.2

0.4

0.6
r:Residual (SZ) N(s=1) 

 

Thus, we can conclude that for the Chinese stock market the returns are
more clustered around the mean, but at the same time are characterized by
more extreme values compared with the corresponding normal distribution.
This empirical finding contradicts the common view that stock market
returns have a distribution with thinner tails than the normal distribution.

Consider now the TAGARCH(1, 1) family of models. Arguably, these
models are more appropriate for equities than GARCH(1, 1) because the
volatility of an equity’s price tends to be inversely related to the price so
that a negative µt−1 has a bigger effect on ht than the same positive µt−1

In fact, the estimates of TAGARCH(1, 1) support this position because
it provides the highest log-likelihood among the different model specifica-
tions in both markets. The TAGARCH(1, 1) seems to be suitable for the
Shanghai exchange in that it makes the mean-reverting process possible.

4. VOLATILITY TRANSMISSION: THE SPILL-OVER
EFFECT

The idea of volatility spill-over was first proposed by Hamao, Masulis,
and Ng (1990) to examine the short-run interdependence of price volatility
across the New York, Tokyo, and London stock markets. Subsequently
several researchers have investigated this phenomenon. For example, Kim
and Rogers (1995) considered the effects on the Korean market of volatility
in both the U.S. and Japanese financial markets. Chelley-Steekey and
Steeley (1996) examined the transmission of volatility between and within
capitalization-ranked portfolios in the United Kingdom and confirmed the
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existence of a spill-over effect. In contrast to these other studies that have
investigated the volatility spill-over across two or more markets in other
countries, such as Booth et al. (1997) or Karolyi (1995), our focus is
on two Chinese stock markets. The case of the two Chinese markets is
particularly interesting because it is possible that the dynamics of prices
on the two markets are different.

In their study of the Chinese stock markets, Liu Song, and Romilly (1996)
found that the Shanghai and Shenzhen share prices are cointegrated. Here
we use GARCH models to examine the possibility of volatility transmission
between the Shanghai and Shenzhen markets in order to determine whether
volatility in one market will influence the other and vice versa.

To model the spill-over effect of volatility in market B on market A, a
lagged squared error term from the mean equation of the GARCH model
for market B may be introduced into the GARCH model for market A as
an explanatory variable in the conditional variance equation. The estimate
of the coefficient of the lagged squared error term is then examined; a
statistically significant estimate would suggest a spill-over effect. The spill-
over effect from market B to market A may be captured by the following
specification:

ht = α0 +
q∑

j=1

αjµ
2
t−j +

p∑
i=1

βiht−i +
w∑

k=1

δkε(B)2t−k (6)

where the ε(B)2t−k denotes previous shocks to market B. Equations (3)
and (6) together constitute the GARCH-spill-over model. The coefficients
(i.e., the δs) measure the impact of past shocks to the returns of market B
on the conditional volatility of market A.

The estimation results for the GARCH(1, 1) spill-over model are pro-
vided in Table 2 as model IV, along the other GARCH models investigated
above. The information in Table 2 reveals that the GARCH-M(1,1) esti-
mates for the two markets show that the risk of stocks, as measured by
the standard deviation, is positively related to the level of returns. This
evidence is consistent with a positive risk premium on stock indexes; that
is, higher risks result in higher returns. Although the coefficients are not
statistically significant, the signs of the coefficients can serve to determine
whether we have a correct model specification. The estimates of the δs
in both markets are not significant, suggesting that shocks to the stock
returns in one market do not transmit to the other; in other words, there
appears to be no spill-over effect between the two Chinese stock markets.
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5. CONCLUSIONS

Volatility is a key parameter in financial modeling and GARCH model-
ing is probably the best platform for estimating it since it can take into
account various characteristic of the data. The two Chinese equity markets
gain an important position on the international finance arena and investors
are more and more attracted by the benefits of diversification and strong
growth over the past decade.

Our analysis reveals that there is significant evidence of volatility cluster-
ing, a result that is different from the previous literature. There is a strong
presence of serial correlation and in estimating the volatility parameter a
series of GARCH models have been investigated.

The daily data on the Shenzhen exchange is fitted well by a GARCH(1, 1)
model while the data on the Shanghai exchange by a TAGARCH(1, 1)
model. These two models capture well the dynamics of the volatility, an
important feature for risk management purposes.

Since there are two exchanges operating in the same market, there is a
possibility for a spill-over effect between the two. We found no empirical
evidence for this. However, the forecasts presented show that the rates of
change for the two market variances are different, an important conclusion
that should not be overlooked when pricing financial products.
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