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The quest for the ‘best’ heavy-tailed distribution for ARCH/GARCH resid-
uals appears to still be ongoing. In this connection, we propose a new distri-
bution that arises in a natural way as an outcome of an implicit model. The
challenging application of prediction of squared returns is also discussed; an
optimal predictor is formulated, and the usefulness of the new distribution for
prediction is demonstrated on three real datasets. c© 2004 Peking University Press
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1. INTRODUCTION

Consider data X1, . . . , Xn arising as an observed stretch from a financial
returns time series {Xt, t = 0,±1,±2, . . .} such as the percentage returns of
a stock price, stock index or foreign exchange rate. The returns series {Xt}
will be assumed strictly stationary with mean zero which—from a practical
point of view—implies that trends and other nonstationarities have been
successfully removed.

The celebrated ARCH models of Engle (1982) were designed to capture
the phenomenon of volatility clustering in the returns series. An ARCH(p)
model can be described by the following equation:

Xt = Zt

√√√√a +
p∑

i=1

aiX2
t−i. (1)
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The original assumption was that the series {Zt} is i.i.d. N(0, 1). Nev-
ertheless, it was soon observed that the residuals, say {Ẑt}, from a fitted
ARCH(p) model do not appear to be in accordance to the normality as-
sumption as they are typically heavy-tailed.

Consequently, practitioners have been resorting to ARCH models with
heavy-tailed errors. A popular assumption for the distribution of the {Zt}
is the t-distribution with degrees of freedom empirically chosen to match
the apparent degree of heavy tails as measured by higher-order moments
such as the kyrtosis; see e.g. Bollerslev et al. (1992) or Shephard (1996)
and the references therein.

Nevertheless, this situation is not very satisfactory since the choice of a
t-distribution seems quite arbitrary, and the same is true for other popular
heavy-tailed distributions, e.g. the double exponential. In the next section,
an implicit ARCH model is developed that gives motivation towards a more
‘natural’—and less ad hoc—distribution for ARCH/GARCH residuals. The
precise definition of this new distribution is given in Section 3, together with
some of its properties. The subject of maximum likelihood estimation for
ARCH and GARCH models is addressed in Section 4. In Section 5, the
problem of prediction of squared returns with ARCH/GARCH models is
discussed, and an optimal predictor is suggested. Finally, Section 6 gives
an application of volatility prediction in three datasets of interest.

2. AN IMPLICIT ARCH MODEL

Under model (1), the residuals

Ẑt =
Xt√

â +
∑p

i=1 âiX2
t−i

(2)

ought to behave like i.i.d. standard normal random variables under the
original ARCH assumptions; in the above, â, â1, â2, . . . are estimates of the
nonnegative parameters a, a1, a2, . . ..

The degree of non-conformance to the normality assumption can be
captured in many ways; the easiest is to compute the empirical kyrto-
sis and compare to the normal kyrtosis of 3. So let Kj

i (Y ) denote the
empirical (sample) kyrtosis of the dataset {Yi, Yi+1, . . . , Yj}. Typically,
Kn

1 (Ẑ) is quite smaller than Kn
1 (X) but still quite bigger than 3, i.e.,

3 < Kn
1 (Ẑ) < Kn

1 (X).
Note that, given the data, Kn

1 (Ẑ) is a continuous function of â, â1, â2, . . ..
The question may then be asked: is there a specification for â, â1, â2, . . .
that will make the kyrtosis Kn

1 (Ẑ) of the residuals to be about 3? The
answer is not in general.
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Taking another look at the ratio given in eq. (2) we may interpret it as
an attempt to ‘studentize’ the return Xt by dividing with a (time-localized)
measure of standard deviation. Nevertheless, there seems to be no reason to
exclude the value of Xt from an empirical (causal) estimate of the standard
deviation of the same Xt. Thus, if we are to include an X2

t term (with its
own coefficient, say a0 ≥ 0) in the studentization, we may define the new
empirical ratio

Ŵt =
Xt√

â + â0X2
t +

∑p
i=1 âiX2

t−i

(3)

that may be associated with a corresponding true equation of the type:

Wt =
Xt√

a + a0X2
t +

∑p
i=1 aiX2

t−i

. (4)

To repeat our question in the new set-up: is there a specification for
â, â0, â1, . . . that will make the kyrtosis Kn

1 (Ŵ ) of the new residuals Ŵt

to be about 3? The answer in general is yes!
To see why, note that the simple specification: â = 0, â0 = 1 and

âj = 0 for j ≥ 1 results into Ŵt = sign(Xt), in which case Kn
1 (Ŵ ) = 1.

But as mentioned before, a specification with â0 = 0 typically results into
Kn

1 (Ŵ ) > 3. Therefore, by the smoothness of Kn
1 (Ŵ ) as a function of

â, â1, â2, . . ., the intermediate value theorem guarantees the existence of a
specification with Kn

1 (Ŵ ) = 3.
Having residuals Ŵt that have kyrtosis equal to 3—as well as an approx-

imately symmetric1 distribution about zero—it is natural to assume that
the true Wt in equation (4) follow a mean zero normal distribution—at
least approximately. Furthermore, by proper re-scaling of the parameters
a, a0, a1, . . ., we may even assume that the Wt approximately follow a stan-
dard normal distribution

We can now re-arrange equation (4) to make it look more like model (1):

Xt = Wt

√√√√a + a0X2
t +

p∑

i=1

aiX2
t−i. (5)

Equation (5) represents an implicit ARCH model; the reason for the name
‘implicit’ is that the term Xt appears on both sides of the equation. Nev-

1Some authors have raised the question of existence of skewness in financial returns;
see e.g. Patton (2002) and the references therein. Nevertheless, at least as a first
approximation, the assumption of symmetry is very useful for model building.
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ertheless, we can solve equation (5) for Xt, to give:

Xt = Ut

√√√√a +
p∑

i=1

aiX2
t−i (6)

where

Ut =
Wt√

1− a0W 2
t

. (7)

Interestingly, the implicit ARCH model (5) is seen to be tantamount to the
regular ARCH(p) model (6) associated with the new innovation term Ut.

However, it is now apparent that exact normality may not hold for the
Wt for then the denominator of (7) would become imaginary. As a matter
of fact, both Ŵt and Wt are bounded; to see this, note that

1
W 2

t

=
a + a0X

2
t +

∑p
i=1 aiX

2
t−i

X2
t

≥ a0.

Thus, |Wt| ≤ 1/
√

a0, and similarly |Ŵt| ≤ 1/
√

â0 almost surely.
A natural way to model a situation where the Wt are thought to be close

to N(0, 1) but happen to be bounded is to use a truncated standard normal
distribution, i.e., to assume that the Wt are i.i.d. with probability density
given by

φ(x)1{|x| ≤ C0}∫ C0

−C0
φ(y)dy

for all x ∈ R (8)

where φ denotes the standard normal density, and C0 = 1/
√

a0. With
a0 small enough, the boundedness of Wt is effectively not noticeable but
yields interesting implications for the distribution of the Ut defined in (7)
as detailed in the following section.

3. A HEAVY-TAILED DISTRIBUTION
FOR ARCH RESIDUALS

To summarize the discussion of Section 2, the newly derived implicit
ARCH model consists of eq. (5) together with the assumption that the
{Wt} series is i.i.d. with density given by eq. (8).

However, if Wt is assumed to follow the truncated standard normal distri-
bution (8), then the change of variable (7) implies that the innovation term
Ut appearing in the ARCH model (6) has the density f(u; a0, 1) defined as:

f(u; a0, 1) =
(1 + a0u

2)−3/2 exp(− u2

2(1+a0u2) )√
2π

(
Φ(1/

√
a0)− Φ(−1/

√
a0)

) for all u ∈ R (9)
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where Φ denotes the standard normal distribution function. Eq. (9) de-
scribes our proposed density for the ARCH residuals. The nonnegative
parameter a0 is a shape parameter having to do with the degree of heavy
tails; note that f(u; a0, 1) → φ(u) as a0 → 0.

It is apparent that f(u; a0, 1) has heavy tails. Except for the extreme
case where a0 = 0 where all moments are finite, in general moments are
finite only up to (almost) order two. In other words, if a random variable
U follows the density f(u; a0, 1) with a0 > 0, then it is easy to see that

E|U |d < ∞ for all d ∈ [0, 2) but E|U |d = ∞ for all d ∈ [2,∞).
(10)

The above property is reminiscent of the t2 distribution, i.e., Student’s t
distribution with 2 degrees of freedom; this is no coincidence in the sense
that

f(u; a0, 1) ∼ c(a0)(1 + a0u
2)−3/2 as u →∞ (11)

where 1/c(a0) =
√

2π
(
Φ(1/

√
a0)− Φ(−1/

√
a0)

)
exp(1/(2a0)).

Eq. (11) shows that the rate by which f(u; a0, 1) tends to 0 as u → ∞
is the same as in the t2 case. Nonetheless, the tails of f(u; a0, 1) are quite
lighter than those of the t2 distribution as the constants associated with
those rates are very different; in particular, the constant c(a0) is much
smaller. In some sense, f(u; a0, 1) achieves its degree of heavy tails in a
subtler way.

TABLE 1.

Truncated moments of the f(u; 0.1, 1) density as compared to those of
the ft2 and ft5 , i.e., the densities of the t2 and t5 distributions.

a = 1 1.9 2 2.1 3 4∫ 10

−10
|u|af(u; 0.1, 1)du 0.905 1.444 1.561 1.695 4.401 18.74∫ 100

−100
|u|af(u; 0.1, 1)du 0.923 1.745 1.983 2.290 20.27 875.45∫ 10

−10
|u|aft2(u)du 1.216 2.931 3.328 3.798 14.94 89.03∫ 100

−100
|u|aft2(u)du 1.394 6.176 7.904 10.278 194.40 9975.3∫ 10

−10
|u|aft5(u)du 0.947 1.519 1.638 1.773 4.304 15.96∫ 100

−100
|u|aft5(u)du 0.949 1.541 1.667 1.811 4.740 24.05

To elaborate on the latter point, Table 1 gives some moments of the
f(u; 0.1, 1) density truncated to either ±10 or ±100, and comparing them
to the respective moments of the (truncated) ft2 and ft5 , i.e., the densities
of the t2 and t5 distributions. It is apparent that up to moments of order 2
(and perhaps even order 2.1), the moments of f(u; 0.1, 1) are close to those
of ft5 . By contrast, for moments of orders 3 and 4 the similarity with ft5

breaks down; at the same time, the lighter tails of f(u; 0.1, 1) as compared
to those of ft2 are quite clear.
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Figure 1: (a) Standard normal density (shaded) vs. f(u; 0.1, 1); (b) Standard
normal density (shaded) vs. t with 5 degrees of freedom; (c) t with 5 degrees
of freedom (shaded) vs. f(u; 0.1, 1); (d) t with 1 degree of freedom (shaded)
vs. f(u; 0.5, 1).

7

FIG. 1. (a) Standard normal density (shaded) vs. f(u; 0.1, 1); (b) Standard normal
density (shaded) vs. t with 5 degrees of freedom; (c) t with 5 degrees of freedom (shaded)
vs. f(u; 0.1, 1); (d) t with 1 degree of freedom (shaded) vs. f(u; 0.5, 1).
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Plots of the (right half of the) density f(u; a0, 1) are pictured in Figure 1
for a0 = 0.1 and 0.5; they are compared to the standard normal as well
as the t5, i.e., t distribution with 5 degrees of freedom. Figures 1 (a)-(c)
focus on the f(u; 0.1, 1) and the t5 since values of a0 about 0.1 and degrees
of freedom of the order of 5 seem to be typical in connection with ARCH
residuals in practice; see e.g. our Section 6.

However, Figure (d) shows what happens when the degree of heavy tails
is cranked up in both families, the f(u; a0, 1) and the t. The differences
are quite apparent; for example, as the degree of heavy tails increases—
i.e., a0 increases in f(u; a0, 1) and degrees of freedom decreases in the t
distribution—the two densities change in opposite ways around the origin:
f(0; a0, 1) is increasing, while the t density is decreasing. Thus, it could be
said that f(u; a0, 1) is more ‘leptokurtic’ than the t-family in the sense that
f(u; a0, 1) becomes even more concentrated near the origin when its degree
of heavy tails increases whereas, at the same time, as u → ∞, f(u; a0, 1)
tends to zero with slower rate than any td distribution with d > 2.

4. MAXIMUM LIKELIHOOD

In this section we consider fitting the ARCH model (6) to our data
X1, . . . , Xn under the assumption that U1, . . . , Un are i.i.d. according to
the proposed new density f(u; a0, 1). Note that we can scale the density
f(u; a0, 1) to create a two-parameter family of densities with typical mem-
ber given by

f(x; a0, s) =
1
s
f(

x

s
; a0, 1) for all x ∈ R. (12)

As before, the parameter a0 is a shape parameter, while the positive pa-
rameter s represents scale.

Consequently, for any t > p, the density of Xt conditionally on the
observed past Ft−1 = {Xs, 0 < s ≤ t − 1} is given by f(x; a0, st), where

the volatility st =
√

a +
∑p

i=1 aiX2
t−i is treated as constant given Ft−1.

Thus, the likelihood of the data X = (X1, . . . , Xn) conditionally on Fp

(also called the ‘pseudo-likelihood’) is given by:

L(a, a0, a1, . . . , ap|X) =
n∏

t=p+1

f(Xt; a0, st). (13)

As usual, define the maximum (pseudo)likelihood estimators â, â0, â1, . . . , âp

as the values of a, a0, a1, . . . , ap that maximize L(a, a0, a1, . . . , ap|X) sub-
ject to the nonnegativity constraints: a ≥ 0 and ai ≥ 0 for all i ≥ 0. The
maximum (pseudo)likelihood estimators generally partake in the favorable
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properties shared by classical maximum likelihood estimators (MLE); see
e.g. Gouriéroux (1997). In addition, the maximum (pseudo)likelihood es-
timators have recently been shown to be consistent even in the absence of
finite fourth moments although in that case their rate of convergence is
slower than

√
n; see Hall and Yao (2003). For simplicity, we will refer to

the maximum (pseudo)likelihood estimators â, â0, â1, . . . , âp as the MLEs
in the ARCH case with f(u; a0, 1) residuals; note, however, that this max-
imization must be done numerically as no closed-form expressions for the
MLEs seem to be available.

Now, and in the remainder of the paper, we will focus on Bollerslev’s
(1996) popular GARCH(1,1) model that has been shown to achieve a most
parsimonious fit. Therefore, let

Xt = stUt with s2
t = C + AX2

t−1 + Bs2
t−1 (14)

and

Ut ∼ i.i.d. f(u; a0, 1) (15)

where the nonnegative parameters A,B, C satisfy the weak-stationarity
condition A + B < 1. All-in-all, the above GARCH(1,1) model given by
(14)–(15) has four parameters:2 A,B, C and a0.

Back-solving in eq. (15) it is easy to see that the GARCH model (14)
is tantamount to the ARCH model (6) with p = ∞ and the following
identifications:

a =
C

1−B
, and ai = ABi−1 for i = 1, 2, . . . (16)

Not surprisingly, the parameter a0 does not figure in at all in eq. (16) as
it is solely associated with the distribution of the errors Ut.

While it is difficult to write down exactly the (pseudo)likelihood in the
GARCH case, it is easy to get an approximation. The most straightforward
such approximation is to note that the exponential decay of ai given in
eq. (16) implies that ai ' 0 for all i ≥ some finite value p0. In this sense,
the GARCH(1,1) model (14) is approximately equivalent to the ARCH
model (6) with p = p0. The MLEs of A,B, C and a0 can then be obtained
by maximizing L(a, a0, a1, . . . , ap0 |X) of eq. (13) with respect to the four
free parameters a0, A,B, C, noting that a, a1, . . . , ap0 are simple functions
of A,B, C by (16).

As in all numerical optimization problems, having good starting values
significantly speeds up the search, and reduces the risk of finding local—but

2The same number of parameters (four) characterizes the GARCH (1,1) model with
t–errors; the number of degrees of freedom for the best-fitting t distribution represents
the fourth parameter.



A HEAVY-TAILED DISTRIBUTION 291

not global—optimizers; to further address the latter risk, the optimization
should be run a few times with different starting values each time. More
practical details are given in the Section 6.

5. PREDICTION OF SQUARED RETURNS WITH
ARCH/GARCH MODELS

The litmus test of any model is its predictive ability. Although ARCH
models could not be expected to successfully predict the (signed) returns
Xt, they are indeed expected to have some predictive ability for the squared
returns X2

t ; see the discussion in the Introduction.
Nevertheless, the literature abounds with suggestions to the contrary.

In particular, it is widely believed that ARCH/GARCH models are char-
acterized by “poor out-of-sample forecasting performance vis-a-vis daily
squared returns”; see Andersen and Bollerslev (1998) “numerous studies
have suggested that ARCH and stochastic volatility models provide poor
volatility forecasts”.

It seems, however, that these negative comments have more to do with
the commonly employed prediction method that seems suboptimal, namely
predicting X2

t by the (estimated) squared volatility ŝ2
t = Ĉ+ÂX2

t−1+B̂s2
t−1

where Â, B̂, Ĉ are the MLEs in the GARCH model (14).
Using ŝ2

t as predictor for X2
t would be optimal if: (a) the GARCH resid-

uals were normal N(0, 1); (b) Mean Squared Error (MSE) was used to mea-
sure the quality of prediction; and (c) the returns Xt had a finite fourth
moment. If conditions (a),(b),(c) were to hold true, then s2

t would repre-
sent the conditional mean of X2

t given the past Ft−1 = {Xi, 1 ≤ i ≤ t− 1}
which is the optimal (with respect to MSE) predictor of X2

t ; since ŝ2
t is our

best proxy for s2
t , the use of ŝ2

t as predictor would then be justified. How-
ever, the predictor ŝ2

t seems to perform similarly—and sometimes even
a bit worse—as compared to the crudest possible predictor, namely the
sample variance of dataset {Xi, 1 ≤ i ≤ t − 1}, thus giving rise to the
aforementioned criticisms.

The poor performance of ŝ2
t is not necessarily evidence against the GARCH

model (14); rather, it may be seen as evidence that one or more amongst
conditions (a),(b),(c) are not true. As a matter of fact, arguments against
condition (a) abound as mentioned in our Introduction; see e.g. Bollerslev
et al. (1992) or Shephard (1996) and the references therein. Noting that
condition (b) is contingent on condition (c) we now focus on the latter.

Let V j
i (Y ) and Kj

i (Y ) denote the empirical (sample) variance and kyr-
tosis (respectively) of a general dataset {Yi, Yi+1, . . . , Yj}. Figure 2 shows
a plot of V k

1 (X) and Kk
1 (X) as a function of k with data X1, X2, . . . repre-

senting daily returns of the S&P500 index spanning the period 1-1-1928 to
8-30-1991. The plot of V k

1 (X) indicates convergence as k increases, giving
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Figure 2: Plot of V k
1 (X) and Kk

1 (X) as a function of k; the data X1, X2, . . .
represent daily returns of the S&P500 index spanning the period 1-1-1928 to
8-30-1991.
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returns of the S&P500 index spanning the period 1-1-1928 to 8-30-1991.
The plot of V k

1 (X) indicates convergence as k increases, giving empirical
evidence that the Strong Law of Large Numbers (SLLN) may be kicking in;
the implication is that the S&P500 data may have a finite 2nd moment. On
the contrary, the plot of Kk

1 (X) indicates divergence as k increases with the
implication that the S&P500 data may not have a finite 4th moment.3 Similar

3The point may be made that returns are ‘physically’ bounded, and hence all moments
are finite. The returns are certainly bounded from below by the value -1, so the assumption
of symmetry would go hand-in-hand with the boundedness assumption. Interestingly, the
largest outliers ever recorded are in the negative direction, e.g. the approximately -0.2
return associated with the crash of 1987, indicating that the lower bound of -1 is really
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FIG. 2. Plot of V k
1 (X) and Kk

1 (X) as a function of k; the data X1, X2, . . . represent
daily returns of the S&P500 index spanning the period 1-1-1928 to 8-30-1991.

empirical evidence that the Strong Law of Large Numbers (SLLN) may be
kicking in; the implication is that the S&P500 data may have a finite 2nd
moment. On the contrary, the plot of Kk

1 (X) indicates divergence as k
increases with the implication that the S&P500 data may not have a finite
4th moment.3 Similar conclusions can be drawn using different datasets,
e.g. foreign exchange rates, etc., provided the records are long enough.
Hence, condition (c) seems to fail.

Thus, the failure of predictor ŝ2
t is justified due to the failure of conditions

(a),(b),(c) that need to be modified as follows: (a′) the GARCH residuals in
model (14) follow a (possibly) heavy-tailed distribution; (b′) an L1 measure
such as Mean Absolute Deviation (MAD) is used to measure the quality

3The point may be made that returns are ‘physically’ bounded, and hence all mo-
ments are finite. The returns are certainly bounded from below by the value -1, so
the assumption of symmetry would go hand-in-hand with the boundedness assumption.
Interestingly, the largest outliers ever recorded are in the negative direction, e.g. the
approximately -0.2 return associated with the crash of 1987, indicating that the lower
bound of -1 is really too far away to have any real import. But even adopting the
viewpoint that returns are bounded, Figure 2 suggests that the 2nd moment may have a
moderate value while the 4th moment is (at least) 10,000 times as large; this phenomenon
may be compared with the truncation effect in Table 1: having the 4th moment equal
500 or 1,000 times the 2nd moment is tantamount (and practically indistinguishable) to
having an infinite 4th moment.
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of prediction; and (c′) the returns Xt have an infinite fourth moment but
a finite second moment—or, at least, an ‘almost’ finite second moment.4

Under conditions (a′),(b′),(c′), the optimal predictor of X2
t given the

past Ft−1 = {Xi, 1 ≤ i ≤ t− 1} is given by

m2 · ŝ2
t (17)

where m2 is the median of the (common) distribution of U2
t . For example,

m2 ' 0.455 if Ut ∼ N(0, 1), while m2 ' 0.528 if Ut ∼ t5.
Under condition (c′), it is also possible to assume the f(u; a0, 1) dis-

tribution for the GARCH residuals, i.e., to assume model (14) together
with (15). Table 2 below contains approximate values for m2 in the case
Ut ∼ f(u; a0, 1) for different values of the shape parameter a0.

TABLE 2.

Approximate values for m1, the median of the distribution of |Ut|, and m2,
the median of the distribution of U2

t , in the case Ut ∼ f(u; a0, 1)
for different values of the shape parameter a0.

a0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

m1 0.676 0.677 0.679 0.681 0.682 0.684 0.685 0.687 0.688 0.670

m2 0.457 0.459 0.461 0.463 0.465 0.467 0.469 0.471 0.473 0.475

A different problem of interest is prediction of |Xt| given the past Ft−1.
It is easy to see that the optimal predictor of |Xt| with respect to MAD,
i.e., L1 loss, is given by m1ŝt, where m1 is the median of the distribution of
|Ut|. Note, however, that conditions (a′), (c′) afford us now the possibility
of adopting an L2 loss; in that case, the optimal predictor of |Xt| with
respect to MSE is given by µ1ŝt , where µ1 is the mean of the distribution
of |Ut|.

Nevertheless, L1 loss seems preferable as the MAD—which is its empiri-
cal version—is both more stable, as well as more easily interpretable. Table
2 gives approximate values for m1 in the case Ut ∼ f(u; a0, 1); the values
of m1 in case Ut follows the N(0, 1) or t5 distribution are m1 = 0.674 and
0.727 respectively. For concreteness, in what follows we focus exclusively
on predicting the squared returns X2

t .

4By ‘almost’ finite second moment, a condition like eq. (10) is implied. Note that,
using finite-sample data such as those in Figure 2, one could never reject the hypothesis
that the returns have ‘almost’ finite second moment only.
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6. PREDICTION OF SQUARED RETURNS: THREE
EXAMPLES

To evaluate and compare the predictive ability of the GARCH (1,1)
model with different distributional assumptions on the errors, we focus on
three well-known datasets.

• (Foreign exchange). Daily returns of the Yen vs. Dollar exchange rate
from January 1, 1988 to August 1, 2002; the sample size is 3600 (weekends
and holidays are excluded).
• (Stock index). Daily returns of the S&P500 stock index from October

1, 1983 to August 30, 1991; the sample size is 2000.
• (Stock price). Daily returns of the IBM stock price from February 1,

1984 to December 31, 1991; the sample size is 2000.

The Yen/Dollar data were downloaded from Datastream; the other two
datasets are available as part of the garch module of the statistical language
S+.

Table 3 shows the MLEs in the GARCH (1,1) model under three possible
distributional assumptions for the GARCH errors, namely the N(0, 1), the
t distribution (with estimated degrees of freedom), and the new f(·; a0, 1)
density. The computations were carried out in S+; the GARCH models
associated with the first two distributions were fitted using the garch mod-
ule, while the numerical optimization5 for the case of the f(·; a0, 1) density
was performed using the function nlminb. Notably, in all three datasets,
the degrees of freedom for the t distribution were estimated to be 5.

For the particular problem of numerical MLE under the density f(·; a0, 1),
good starting values for A,B, C are provided by the MLEs obtained using
the aforementioned t5 distribution for the GARCH residuals. As a matter
of fact, as Table 3 shows, the actual MLEs associated with the f(·; a0, 1) dis-
tribution for the residuals turn out to be remarkably close to those starting
values. Perhaps of some interest is that the sum Â+B̂ seems to consistenly
take higher values under the f(·; a0, 1) distribution as compared to the t5.

Regarding â0, any number in the interval [0.07, 0.10] is a good starting
value with a value around 0.08 probably being best. Recall that the trun-
cation level for the quasi-normal residuals Ŵt of Section 2 is 1/

√
â0. As

Table 3 suggests, this number ranges from 3.35 to 3.86. Since 99.7% of
the mass of the N(0, 1) distribution lies within ±3 anyway, this truncation
does not practically spoil the normality of the Ŵt residuals.

In order to evaluate the out-of-sample performance of different predictors
of squared returns the following procedure was implemented: the first half
of each of our three datasets was used to get estimates of the GARCH coef-

5Some simple S+ functions associated with numerical MLE and Monte Carlo under
the assumption of density f(·; a0, 1) are available from: www.math.ucsd.edu/∼politis
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TABLE 3.

Maximum (pseudo)likelihood estimators in the GARCH (1,1) model in the
three datasets, and under three possible distributional assumptions

for the GARCH errors: the N(0, 1), the t distribution
(with estimated degrees of freedom), and the

new f(·; a0, 1) density.

â0 Â B̂ Ĉ

Yen/Dollar–N(0, 1) N/A 0.062 0.898 2.29e-06

Yen/Dollar–t distr. N/A 0.027 0.923 8.95e-07

Yen/Dollar–f(·; a0, 1) 0.089 0.028 0.938 8.38e-07

S&P500–N(0, 1) N/A 0.104 0.834 6.63e-06

S&P500–t distr. N/A 0.022 0.927 1.83e-06

S&P500–f(·; a0, 1) 0.081 0.023 0.936 1.96e-06

IBM–N(0, 1) N/A 0.104 0.807 1.72e-05

IBM–t distr. N/A 0.027 0.913 5.65e-06

IBM–f(·; a0, 1) 0.066 0.029 0.912 6.32e-06

ficients (including a0), while the prediction of squared returns was carried
out over the second half. Table 4a tabulates the relative performance—as
measured by the Mean Absolute Deviation (MAD)—of three predictors:
the benchmark, the simple ŝ2

t , and the optimal m2ŝ
2
t . The benchmark

amounts to the aforementioned crudest predictor, i.e., the sample variance
of dataset {Xi, 1 ≤ i ≤ t− 1}. The values of m2 used in the f(·; a0, 1) case
were obtained from Table 2 based on the estimated value for a0; for the t
distribution, the m2 associated with t5 was used.

It is apparent from Table 4a, that the simple predictor ŝ2
t seems to ac-

tually have some predictive ability, i.e., to improve upon the crude bench-
mark, when a heavy-tailed distribution—t or f(·; a0, 1)—is assumed for the
GARCH residuals. Detecting the presence of this predictive ability is solely
due to using an L1 measure to quantify the accuracy of prediction since,
as mentioned before, the MSE of predictor ŝ2

t is generally comparable to
that of the benchmark.

Also immediate from Table 4a is that the predictor ŝ2
t is always inferior to

the optimal predictor m2ŝ
2
t . Focusing on the latter, the best performance

is achieved using the two heavy-tailed distributions, with the f(·; a0, 1)
distribution having a slight edge over the t distribution in all three cases.

Note, however, that in practice the GARCH estimates would be updated
daily, i.e., to predict Xt given the past Ft−1, the GARCH coefficients would
be estimated based on the whole of Ft−1. Although it is quite feasible for
a practitioner to devote 2-3 minutes daily to update those coefficients, it is
unfeasible computationally to include this daily updating in our simulation.
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TABLE 4a.

Entries represent the Mean Absolute Deviation (multiplied by 1,000)
for the three predictors of squared returns: the benchmark, the

simple ŝ2
t , and the optimal m2ŝ2

t ; for the last two, the
GARCH(1,1) model (14) was used. The predictions

were carried out over the 2nd half of
each dataset, with coefficients

estimated from the 1st half.

benchmark ŝ2
t m2ŝ

2
t

Yen/Dollar–N(0, 1) 0.0697 0.0646 0.0545

Yen/Dollar–t distr. ” 0.0550 0.0541

Yen/Dollar–f(·; a0, 1) ” 0.0567 0.0540

S&P500–N(0, 1) 0.3343∗ 0.1042 0.0919

S&P500–t distr. ” 0.0947 0.0920

S&P500–f(·; a0, 1) ” 0.0975 0.0918

IBM–N(0, 1) 0.1692 0.1918 0.1500

IBM–t distr. ” 0.1571 0.1455

IBM–f(·; a0, 1) ” 0.1609 0.1454
∗ This value is as high because the crash of 1987 is present in
the 2nd half of the S&P500 dataset.

The result is that the entries of Table 4a are conservative in the sense
that prediction performances would be expected to improve if the GARCH
estimates were to be updated daily. To see the effect of having better
GARCH estimates when the prediction is carried out we go to the other
extreme: Table 4b shows the performances of our predictors carried out
over the same 2nd half of each dataset but using GARCH coefficients esti-
mated from the whole of the dataset, i.e., the coefficients from Table 3.

By contrast to the conservative entries of Table 4a, the entries of Table
4b are over-optimistic as the GARCH coefficients used have unrealistic ac-
curacy; therefore, the truth should lie somewhere in-between Table 4a and
Table 4b. Nevertheless, the two tables are similar enough to suggest that
the effect of the accuracy of the GARCH coefficients is not so prominent,
and Table 4b leads to the same conclusions as those gathered from Table
4a.

7. CONCLUSIONS

A new heavy-tailed density for ARCH/GARCH residuals was proposed
in eq. (9), motivated by the development of an implicit ARCH model. The
properties of the density f(·; a0, 1) were studied, and the procedure for
obtaining numerical MLEs was outlined.
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TABLE 4b.

Entries represent the Mean Absolute Deviation (multiplied by 1,000) for
the three predictors of squared returns. The predictions were

carried out over the 2nd half of each dataset, with GARCH
coefficients estimated from the whole of the dataset.

benchmark ŝ2
t m2ŝ

2
t

Yen/Dollar–N(0, 1) 0.0697 0.0650 0.0545

Yen/Dollar–t distr. ” 0.0554 0.0540

Yen/Dollar–f(·; a0, 1) ” 0.0574 0.0539

S&P500–N(0, 1) 0.3343 0.1135 0.0942

S&P500–t distr. ” 0.0948 0.0920

S&P500–f(·; a0, 1) ” 0.0978 0.0919

IBM–N(0, 1) 0.1692 0.1815 0.1472

IBM–t distr. ” 0.1545 0.1453

IBM–f(·; a0, 1) ” 0.1577 0.1453

The challenging problem of prediction of squared returns was put in a
rigorous framework, and the optimal predictor (17) was formulated. The
usefulness of the optimal predictor was demonstrated on three real datasets.

By contrast to what is widely believed, it was found that ARCH/GARCH
models do have predictive validity for the squared returns; this is partic-
ularly true when a heavy-tailed distribution is assumed for the GARCH
residuals with the f(·; a0, 1) distribution appearing to have a slight edge
over the popular t distribution. Notably, to appreciate and take advantage
of this predictive ability one must: (a) use a more meaningful measure of
prediction performance such as L1 loss, and (b) use the optimal predictor
which is given by (17) in the L1 case.
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