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This paper proposes a simple consistent nonparametric test of conditional
symmetry based on the principle of characteristic functions. The test statistic
is shown to be asymptotically normal under the null hypothesis of conditional
symmetry and consistent against any conditional asymmetric distributions.
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1. MOTIVATION

For the purpose of identification, three kinds of restrictions have been
frequently imposed on the statistical relationship between observables and
unobservables in many econometric models. They are conditional moment
restrictions, independence and conditional symmetry. See Newey (1990)
for a detailed description of how these types of restrictions are related.
Conditional symmetry implies the distribution of one random variable, typ-
ically the unobservable error term, given another random vector, usually
the observed independent variables, has a symmetric form. Even though
it imposes a strong shape restriction, conditional symmetry allows for het-
eroskedasticity. There are a few semiparametric estimators proposed under
conditional symmetry. Manski (1984) and Newey (1988) study a regression
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model under conditional symmetry. Powell’s (1986a) and Newey’s (1991)
estimators for Tobit models under conditional symmetry also show its po-
tential. The semiparametric efficiency bound for various types of Tobit
models is also studied under conditional symmetry. See Newey (1991) and
Chen (1995, 2000).

As noticed by Hyndman and Yao (2002), the symmetry of conditional
density function is also of interest in modelling time series data in business
and finance and in constructing predictive regions for nonlinear time series.
For the former see Brännäs and De Gooijer (1992) and for the latter, see
Hyndman (1995), De Gooijer and Grannoun (2000), and Polonik and Yao
(2000).

Despite the wide use of the property of conditional symmetry, tests for
conditional symmetry1 have not been addressed very much in the litera-
ture. The first tests are proposed by Powell (1986b) for censored regression
models and by Newey and Powell (1987) for linear regression models via
asymmetric least squares estimation. As noticed by Zheng (1998), these
tests are unlikely to be consistent against arbitrary conditional asymmet-
ric distributions. Zheng proposes a test of conditional symmetry using a
nonparametric kernel method but his test needs integral calculation and is
hard to implement. Bai and Ng (2001) propose an alternative test for con-
ditional symmetry for time series models via empirical distribution func-
tion approach. But their test relies on the correct specification of both
conditional mean and conditional variance. In particular they assume mul-
tiplicative error and their test is essentially a test for symmetry. Hyndman
and Yao (2002) develop a bootstrap test for the symmetry of conditional
density functions based upon their improved methods for conditional den-
sity estimation.

In this paper we propose a simple test for conditional symmetry based
on the principle that two conditional distributions are identical if and only
if their respective conditional characteristic functions are. Our approach
offers a convenient approach to testing for distributional hypotheses via
an infinite number of conditional moment regressions. Also our test, un-
like the aforementioned tests, allows both the dependent variable and the
conditional variables to be multivariate.

The remainder of the paper is organized as follows. In section 2, we
describe the hypothesis and test statistic. In section 3 we study the as-
ymptotic null distribution of the test statistic, the consistency and local
power properties of our test, and the validity of the simple bootstrap. We
report some Monte Carlo evidence of our test in Section 4. All technical
details are relegated to the Appendix. Throughout the paper, for a matrix

1In cases of test for unconditional symmetry, various tests have been proposed, in-
cluding the most recent ones of Fan and Gencay (1995) Ahmad and Li (1997), Dicks
and Tong (1999) and Osmoukhina (2001).
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A = (aij), we denote its norm by ‖A‖ = {tr (A′A)}1/2. Further, let
∑

i 6=j

and
∑

1≤i<j≤n denote
∑n

i=1

∑n
j=1,j 6=i and

∑n
i=1

∑n
j=2,j>i respectively.

2. THE HYPOTHESIS AND TEST STATISTIC

Let (X,Y ) , (X1, Y1) , . . . , (Xn, Yn) be independent observations with com-
mon joint probability fXY (·, ·). Let fY |X (·|x) and FY |X (·|x) denote the
conditional density and distribution of Y given X = x ∈ Rd1 , respectively.
Further denote the marginal density and distribution of X as fX (·) and
FX (·), respectively. We are interested in testing whether the random vari-
able Y is symmetric around zero conditional on X:

H0 : Pr[fY |X(y|X) = fY |X(−y|X)] = 1 for all y ∈ Rd2 . (1)

The alternative hypothesis is

H0 : Pr[fY |X(y|X) = fY |X(−y|X)] < 1 for some y ∈ Rd2 . (2)

The proposed test is based on the principle of characteristic functions. It
is well known that two (conditional) distribution functions are equal almost
everywhere (a.e.) if and only if their respective (conditional) characteristic
functions are equal (a.e.). To state this precisely, let φY |X(·;x) be the con-
ditional characteristic functions φY |X of Y given X = x: φY |X(u;x) =
E[exp(iu′Y )|X = x], where i =

√
−1 and u ∈ Rd2 . Let ψ(u;x) ≡

φY |X(u;x) − φY |X(−u;x). The conditional density of Y given X is sym-
metric if and only if ψ(u;x) = 0 a.e. −x for every u ∈ Rd2 . This motivates
us to consider the following smooth functional

Γ ≡ 1
2

∫∫ ∣∣φY |X(u;x)− φY |X(−u;x)
∣∣2 dG(u)dFX(x), (3)

where dG(u) = g(u)du and we choose g to be a density function with full
support on Rd2 .

Under some regularity conditions (to allow the change of order of inte-
gration), one can write

Γ =
1
2

∫∫ ∣∣φY |X(u;x)− φY |X(−u;x)
∣∣2 dG(u)dFX(x)

=
1
2

∫∫∫∫
[exp (iu′y)− exp (−iu′y))] [exp (−iu′ỹ)− exp (iu′ỹ))] dG(u)

dFY |X (y|x) dFY |X (ỹ|x) dFX(x)

=
1
2

∫∫∫
[h (y − ỹ) + h (−y + ỹ)− h (y + ỹ)− h (−y − ỹ)] dFY |X (y|x)

dFY |X (ỹ|x) dFX(x).
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where h(y) ≡
∫
eiu′ydG(u), the characteristic function of the probability

measure dG(u). Without loss of generality, we assume h is symmetric so
that

Γ =
∫∫∫

[h (y − ỹ)− h (y + ỹ)] dFY |X (y|x) dFY |X (ỹ|x) dFX(x). (4)

This integral facilitates the application of the convenient asymptotic dis-
tribution theory for U -statistics.

To introduce the test statistic of interest, let K be a kernel function on
Rd1 and B ≡ B(n) be the bandwidth d1 × d1 matrix. Define KB(u) ≡
|B|−1

K(B−1u), where |B| is the determinant of B. We propose the fol-
lowing test statistic

Γn =
2

n (n− 1) |B|1/2

∑
1≤i<j≤n

Hn (Zi, Zj) , (5)

where Zi = (Xi, Yi), and
Hn (Zi, Zj) = |B|1/2 [h (Yi − Yj)− h (Yi + Yj)]KB (Xi −Xj).

The test statistic Γn has the advantage that it has zero mean under H0

and hence it does not have a finite sample bias term. We will show that
after being appropriately scaled, Γn is asymptotically normally distributed
under H0.

3. THE ASYMPTOTIC DISTRIBUTION AND BOOTSTRAP
TEST

In this section we establish the asymptotic property of Γn under H0,
H1, and a sequence of local alternatives. We also prove the validity of a
bootstrap test for the null of conditional symmetry.

3.1. Asymptotic distributions
To study the asymptotic distribution of Γn, we make the following as-

sumptions.

A1 fXY (x, y) is continuous and has uniformly bounded second order
derivatives with respect to x.

A2 The density function g is uniformly bounded such that its character-
istic function h is uniformly bounded and symmetric.

A3 The kernel function K (·) is a symmetric, bounded and continuous
density on Rd1 satisfying

∫
‖u‖2K (u) du <∞.

A4 As n→∞, ‖B‖ → 0, and n |B| → ∞.

Assumption A1 imposes the smoothness condition on fXY and it can be
weakened to a Lipschitz continuity with some modifications on the proof.
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The uniform boundedness of h in A2 comes free as one important property
of characteristic functions. From the derivation of our results, it is easy to
see that the symmetry of h can be easily relaxed. However, many of the
commonly used g functions are symmetric. For example, g can be either a
normal density function or a double exponential density function. Both A3
and A4 are standard in the literature. In practice, one frequently chooses
B to be a diagonal matrix: B = diag(b1, . . . , bd1).

We can state our main results.

Theorem 1. Under Assumptions A1-A4 and under H0,
Tn ≡ n |B|1/2 Γn/σ̂

d→ N(0, 1), where σ̂2 = 2 (n (n− 1))−1 ∑
i 6=j H

2
n (Zi, Zj)

is a consistent estimator for

σ2 =

2

Z
K2 (u) du

�ZZZ
[h (y1 − y2)− h (y1 + y2)]

2 fXY (x, y1) fXY (x, y2) dxdy1dy2

�
.

(6)

The proof of the above theorem is relegated to the Appendix. To imple-
ment the test, we compare Tn with the one-sided critical value zα from the
standard normal distribution, and reject the null when Tn > zα.

The following result provides the asymptotic behavior of Tn under H1.

Theorem 2. Under Assumptions A1-A4 and under H1,

Tn/(n |B|1/2) = Γn/σ̂
p→ 1

2σ

∫ ∫
|ψ(u;x)|2 dG (u) f2

X (x) dx > 0. (7)

Thus Tn →∞ under H1 and the test is consistent.
We next study the local power of the test. For simplicity, we specify the

local alternative in terms of conditional characteristic functions:

H1(αn) : φY |X(u;x) = φY |X(−u;x) + αn∆(u, x), (8)

where ∆(u, x) satisfies γ ≡ 1
2

∫ ∫
|∆(u, x)|2 dG(u)f2

X (x) dx <∞, and αn →
0 as n→∞.

The following theorem shows that our test can distinguish local alterna-
tives H1(αn) at rate αn = n−1/2 |B|−1/4.

Theorem 3. Suppose that αn = n−1/2 |B|−1/4 in H1(αn). Under As-
sumptions A1-A4, the local power of the test satisfies Pr(Tn ≥ zα|H1(αn)) →
1− Φ(zα − γ/σ).



256 LIANGJUN SU AND SAINAN JIN

Theorem 3 implies that with a proper choice of B, the test is consistent
against any local alternatives approaching the null at rates arbitrarily close
to (but slower than) the parametric rate n−1/2.

3.2. The bootstrap test
Although Tn has asymptotic normal distribution under H0, its conver-

gence rate is only of the order |B|1/2. Thus we next study the bootstrap
method as an alternative approximation to the null distribution of Tn.

Noticing that under H0, (X,−Y ) has the same distribution as (X,Y ), so
we resample from the sampleDn ≡ {(X1, Y1) , . . . , (Xn, Yn) , (X1,−Y1) , . . . ,
(Xn,−Yn)}. Let Zn = {Xi, Yi}n

i=1, and let {Z∗
i ≡ (X∗

i , Y
∗
i )}n

i=1 denote the
bootstrap sample obtained by sampling with replacement from Dn. The
bootstrap version of Tn is given by

T ∗
n =

2
(n− 1)

∑
1≤i<j≤n

Hn

(
Z∗

i , Z
∗
j

)
/σ̂∗, (9)

where

σ̂∗2 =
2

n (n− 1)

∑
i 6=j

H2
n

(
Z∗

i , Z
∗
j

)
. (10)

It is easy to establish the following theorem.

Theorem 4. Under Assumptions A1-A4 and H0, we have

T ∗
n |Zn

d→ N(0, 1). (11)

Theorem 4 only says that the bootstrap method works asymptotically.
We could follow the proof of Theorem 3 of Li and Wang (1998), or Theorem
2.3 in Li (1999) and show theoretically that the bootstrap method provides
a better null approximation than the asymptotic normal distribution. This
involves further complication, and we leave it for future research.

4. MONTE CARLO RESULTS

In this section we conduct a small set of Monte Carlo simulations to eval-
uate the finite-sample performance of the our bootstrap test for conditional
symmetry. Like Zheng (1998), we consider the following data generating
process (DGP):

W = 1 +X +Xε,

where X and ε are two independent random variables, and X is drawn from
the standard normal distribution. Let Y = W −1−X. The null hypothesis
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H0 we are interested in is that Y is symmetric about zero conditioning on
X. In practice, we observe the data on (W,X) so that Y is estimated by
the least-squares residual Ŷ in the regression of W on the constant and X.

To yield conditionally symmetric and asymmetric distributions for Y ,
we draw ε from symmetric and asymmetric distributions following Zheng
(1998). That is, we first generate ε from the standard normal distribution
and the t-distribution with 10 degrees of freedom and label the resultant
DGPs as DGP1 and DGP2, respectively. We then draw ε from another six
distributions, two symmetric and four asymmetric, from the generalized
lambda family (GLF) and label the resultant DGPs as DGP3-DGP8. The
distributions in the GLF family are defined in terms of the inverses of the
cumulative distribution functions: F−1 (u) = λ1 +

[
uλ3 − (1− u)λ4

]
/λ2

for u ∈ (0, 1). The parameters defining the six distributions are listed in
Table 1 of Zheng (1998). We transform all distributions from this family
to have mean 0 and variance 1.

To implement our test, we choose both the kernel function K (·) and the
weight function g (·) to be the standard normal density. The characteristic
function of g (·) is then given by h (u) = exp

(
−u2/2

)
. Since our bootstrap

version of the test is not sensitive to the choice of bandwidth B, we follow
the Silverman’s rule of thumb by setting B = 1.06σ̂Xn

−1/5 where σ̂X is
the sample standard deviation of X.

TABLE 1.

Proportion of rejections for distributions 1-8

n = 100 n = 200 n = 400

1% 5% 10% 1% 5% 10% 1% 5% 10%

Symmetric

DGP1 0.018 0.076 0.154 0.016 0.072 0.150 0.016 0.064 0.124

DGP2 0.020 0.072 0.130 0.016 0.066 0.130 0.014 0.064 0.126

DGP3 0.022 0.060 0.112 0.014 0.060 0.118 0.014 0.056 0.114

DGP4 0.024 0.084 0.160 0.014 0.076 0.152 0.012 0.072 0.146

Asymmetric

DGP5 0.112 0.348 0.526 0.322 0.740 0.872 0.848 0.992 1.000

DGP6 0.154 0.368 0.550 0.298 0.682 0.836 0.848 0.992 0.996

DGP7 0.102 0.340 0.582 0.290 0.700 0.866 0.804 0.980 1.000

DGP8 0.130 0.378 0.564 0.306 0.694 0.874 0.782 1.000 1.000

We conduct the simulation with sample sizes n = 100, 200, and 400, and
the number of bootstrap resamples is 1000. Each experiment is based on
500 replications. The results are reported in Table 1. For small sizes, the
test is oversized and the power is fairly good. As the sample increases,
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the sizes become reasonably closer to their nominal level and the power
dominates that of Zheng (1998) significantly.

APPENDIX A

Let A ≈ C denote A = C (1 + o (1)) componentwise for any matrices
A,C of the same dimension. Let Z = (X,Y ), and zi = (xi, yi), i = 1, 2.
Let E∗ and var∗ denote the expectation and variance conditional on the
data Zn.

Proof of Theorem 1
The proof of the first part is straightforward by applying Theorem 1 of

Hall (1984). So we only sketch the proof. By construction and Assumptions
A2-A3, Hn (z1, z2) = Hn (z2, z1).

E [Hn (z1, Z2)]

= |B|1/2
∫ {∫

[h (y1 − y)− h (y1 + y)] dFY |X (y|x)
}
KB (x1 − x) dFX (x)

= 0

under H0.

E
�
H2

n (Z1, Z2)
�

= |B|
Z Z

[h (y1 − y2)− h (y1 + y2)]
2K2

B (x1 − x2) dFXY (x1, y1) dFXY (x2, y1)

=

Z
K2 (u) du

�Z Z Z
[h (y1 − y2)− h (y1 + y2)]

2 fXY (x, y1) fXY (x, y2) dxdy1dy2

�

+O
�
‖B‖2�

= σ2/2 +O
�
‖B‖2� .

Let Gn (z1, z2) = E [Hn (Z, z1)Hn (Z, z2)]. Then

E
[
G2

n (Z1, Z2)
]

= |B|2E
[∫

[h (y − Y1)− h (y + Y1)] [h (y − Y2)− h (y + Y2)]KB (x−X1)

KB

(
x−X2

)
dFXY (x, y)

]2
= O (|B|) .

E
[
H4

n (Z1, Z2)
]

= |B|2
∫ ∫

[h (y1 − y2)− h (y1 + y2)]
4
K4

B (x1 − x2) dFXY (x1, y1) dFXY (x2, y2)

= O
(
|B|−1

)
.
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So as n→∞,

E
[
G2

n (Z1, Z2)
]
+ n−1E

[
H4

n (Z1, Z2)
]

{E [H2
n (Z1, Z2)]}2

=
O (|B|) +O

(
n−1 |B|−1

)
{
σ2/2 +O(‖B‖2)

}2 → 0.

The conditions of Theorem 1 of Hall (1984) are satisfied and the result
follows.

Next, we show that σ̂2 = 2 (n (n− 1))−1 ∑
i 6=j H

2
n (Zi, Zj) is a con-

sistent estimator for σ2. Noticing that E
(
σ̂2

)
= 2E

[
H2

n (Z1, Z2)
]

=

σ2 +O
(
‖B‖2

)
and E

(
σ̂2

)2 = σ4 +O
(
n−1

)
+O

(
n−2 |B|−1

)
+O

(
‖B‖2

)
,

var
(
σ̂2

)
= o(1) and σ̂2 p→ σ2 by the Cauchy-schwartz inequality.

Proof of Theorem 2
Under H1,

E (Γn)

= E
h
|B|−1/2Hn (Z1, Z2)

i

≈
Z Z Z

[h (y1 − y2)− h (y1 + y2)] dFY |X (y1|x) dFY |X (y2|x) f2
X (x) dx

=
1

2

Z Z Z
[h (y1 − y2) + h (y1 − y2)− h (y1 + y2)− h (−y1 − y2)] dFY |X (y1|x)

dFY |X (y2|x) f2
X (x) dx

=
1

2

Z Z Z Z �
exp

�
iu′y1

�
− exp

�
−iu′y1

�� �
exp

�
−iu′y2

�
− exp

�
iu′y2

��
dG (u)

dFY |X (y1|x) dFY |X (y2|x) f2
X (x) dx

=
1

2

Z Z ����
Z �

exp
�
iu′y

�
− exp

�
−iu′y

��
fY |X (y|x) dy

����
2

dG (u) f2
X (x) dx

=
1

2

Z Z
|ψ(u;x)|2 dG (u) f2

X (x) dx

Simple but tedious calculations show var(Γn) = o(1). So

Γn
p→ 1

2

∫ ∫
|ψ(u;x)|2 dG (u) f2

X (x) dx

by the Chebyshev’s inequality. Noting that σ̂2 = σ2 + op (1) also holds
under H1, the result follows.

Proof of Theorem 3

The proof is similar to that of 2 except that now under H1 (αn),
E

[
n |B|1/2 Γn

]
= n |B|1/2 1

2

∫ ∫
|ψ(u;x)|2 dG (u) f2

X (x) dx = n |B|1/2
α2

nγ =
γ.
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Proof of Theorem 4

The proof follows closely to that of 1 (see also Lemma 2.2 of Li (1999)).
First,

E∗[Hn(Z∗
1 , Z

∗
2 )|Z∗

1 ]

= |B|1/2
E∗[{[h (Y ∗

1 − Y ∗
2 )− h (Y ∗

1 + Y ∗
2 )]KB (X∗

1 −X∗
2 ) |Z∗

1}

=
1
2n

n∑
i=1

[h (Y ∗
1 − Yi)− h (Y ∗

1 + Yi)]KB (X∗
1 −Xi)

+
1
2n

n∑
i=1

[h (Y ∗
1 + Yi)− h (Y ∗

1 − Yi)]KB (X∗
1 −Xi)

= 0.

So conditional on Zn Hn(Z∗
i , Z

∗
j ) is a degenerate U -statisitc and E∗ [T ∗

n ] =
0. Noting that conditional on Zn, {Z∗

i } are i.i.d., we have

var∗ (T ∗
n) = E∗ [

H2
n (Z∗

1 , Z
∗
2 )

]
=

1
4n2

n∑
i=1

n∑
j=1

{
H2

n ((Xi, Yi) , (Xj , Yj)) +H2
n ((Xi, Yi) , (Xj ,−Yj))

+ H2
n ((Xi,−Yi) , (Xj , Yj)) +H2

n ((Xi,−Yi) , (Xj ,−Yj))
}

=
n− 1
n

σ̂2 + op (1) = σ2 + op (1) .

Finally, we can show that the other conditions of Theorem 1 of Hall (1984)
also holds. The result in 4 follows.
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