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This paper considers the estimation of coefficients in a linear regression
model with missing observations in the independent variables and introduces
a modification of the standard first order regression method for imputation of
missing values. The modification provides stochastic values for imputation.
Asymptotic properties of the estimators for the regression coefficients arising
from the proposed modification are derived when either both the number of
complete observations and the number of missing values grow large or only
the number of complete observations grows large and the number of miss-
ing observations stays fixed. Using these results, the proposed procedure is
compared with two popular procedures—one which utilizes only the complete
observations and the other which employs the standard first order regression
imputation method for missing values. It is suggested that an elaborate sim-
ulation experiment will be helpful to evaluate the gain in efficiency especially
in case of discrete regressor variables and to examine some other interesting
issues like the impact of varying degree of multicollinearity in explanatory vari-
ables. Applications to some concrete data sets may also shed some light on
these aspects. Some work on these lines is in progress and will be reported in
a future article to follow. ®© 2005 Peking University Press
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1. INTRODUCTION

It is not uncommon in many applications of regression analysis that some
values of certain explanatory variables are not available due to one reason
or the other. A simple solution is then to discard the available values of
other variables in the model and to confine attention to complete data
only. Such a solution, it is well known, has often serious statistical con-
sequences and is surely not an efficient strategy. An alternative solution
is to plug in imputed values for missing observations and then to carry
out the regression analysis. Such imputed values can be obtained in sev-
eral ways; see, e.g., Little and Rubin (1987) for basic considerations and
Little (1992) for a detailed discussion of missing covariates in regression,
and Rao and Toutenburg (1999) for a detailed account of MSE-superiority
investigations for imputation methods. When these imputed values are
nonstochastic, the application of least squares procedure for the estimation
of regression coefficients generally yields biased and inconsistent estima-
tors; see, e.g., Toutenburg, Heumann, Fieger and Park (1995) who have
examined the efficiency properties of such procedures with respect to the
procedure that uses only complete observations and provides unbiased es-
timators of regression coefficients. This raises an interesting issue related
to efficiency properties of procedures which employ stochastic values for
imputation of missing observations on explanatory variables. This article
is a modest attempt in this direction.

We consider the imputation method based on first order regression. This
method and some modifications are discussed in Buck (1960), Afifi and
Elashoff (1966) and Dagenais (1973). It essentially amounts to running the
auxiliary regressions of each one of explanatory variables (for which some
values are missing) on the remaining explanatory variables (for which no
value is missing) employing the complete observations only. The estimated
equations are then used to formulate predictors for missing values. The
thus obtained predicted values are then utilized as substitutes for missing
observations on explanatory variables. This leads to complete data set
and now the regression analysis is performed. As all the observations on
study variable are available, we can easily include the study variable also
in the capacity of an additional explanatory variable while running the
auxiliary regressions. This will lead to another imputation method which
can be termed as modified first order regression method, and will obviously

* This work was carried out before Prof. V.K. Srivastava passed away in 2001.
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provide imputed values that are no more nonstochastic. Examining the
impact of such imputed values on the estimation of regression coefficients
is the objective of present investigation.

The plan of this article is as follows. In Section 2, we present the model
specification and describe three estimation procedures for the regression
coefficients. One is the procedure that discards incomplete portion of data
while the remaining two employ imputed values obtained from first order
regressions. Out of these two, one uses nonstochastic values for imputation
while the other uses stochastic values. Asymptotic properties of these three
procedures are discussed in Section 3.

Finally, some summarizing remarks are placed in Section 4. Lastly, the
proofs of Theorems are outlined in Appendix.

2. MODEL SPECIFICATION AND ESTIMATION
PROCEDURE

Let us consider the following linear regression model:

y=Xp+e
which is structured as follows:
Ye = Xcﬁ+aecv (1)
Y = X*ﬂ+06*7 (2)

where y. and y. denote m. x 1 and m, x 1 vectors of observations on the
study variable, X, and X, are m.x K and m, X K matrices of observations
on K explanatory variables, § is a K x 1 vector of unknown regression
coefficients, €. and €, are m. x 1 and m, x 1 vectors of disturbances and o
is a scalar.

It is assumed that the matrix X, is partially observed and contains some
missing values. To keep the exposition simple but without any loss of
generality, let us assume that the values of the last explanatory variable in
X are missing. Thus we can express X, as [Z, , z.] where Z, is m, x (K—1)
matrix with no missing values and x, is the last column vector with all
missing values. Accordingly partitioning X. and (3, we write

X.=[Ze.a, B= (”)

(0%

where Z, comprises first (K — 1) column vectors of X, and z. is the last
column vector. Similarly, v denotes a column vector formed by first (K —1)
elements of 8 and « is the last element.
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Thus we can write the model as follows:

Yo = ZeY+ame+ o€, (3)
Ys = ZuY + QTy + 06y . (4)

Finally, we assume that the elements of disturbance vectors €. and e,
are independently and identically distributed with zero mean and variance
one.

For the following it is assumed that missingness of x, depends only on
the values of all the explanatory variables but is independent of the study
variable y so the process of missingness is “missing not at random”. Using
the missing data indicator matrix R (Rubin, 1976) with (7, j)th element
rij = 1 if x;; is observed and r;; = 0 if x;; is missing, in our notation R

has the structure
(a1
R= ((1...1) 0

corresponding to the dimensions of

e Te
Zye Ty )

Then the assumption on the missing mechanism results in

[y, RIX)

= f(ylX) (5)
as f(R|y, X) = f(R|X), i.e., regression of y on X is independent of R.

It may be noticed, that if (5) is not valid, i.e. missingness may also
depend on y, then we get

o) = g = PRI o gy x)

In this case estimation procedures would depend on the missing data process.

As z, is not available, application of least squares to the entire model
specified by (3) and (4) provides although best linear unbiased estimators of
regression coefficients but lacks any practical utility. The simplest solution
in such circumstances is to ignore (4) and to apply least squares to (3).
This gives the following estimator of §:

b, = (XéXc)_lXéyc- (6)
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This estimator b, fails to utilize the information contained in m, ob-
servations on the study variable and (K — 1) explanatory variables of the
model. This kind of complete discard is obviously not always a satisfactory
proposition and may often have misleading implications.

An alternative solution is to employ some imputation method so that
missing values of the last explanatory variable can be replaced. There
are several ways to do this; see, e.g., Rao and Toutenburg (1999, Chap.
8). Among them, an interesting procedure known as first order regression
method is to run an auxiliary regression of the variable in z. on the remain-
ing (K — 1) variables in Z, and to use the estimated equation for finding
the predicted values of missing observations, viz.,

vr =22, 2.) 2z, . (7)

Replacing z. in (4) by zg and then applying least squares to the thus
obtained repaired model for estimating 3, we get the following estimator

br = (X. X+ XpXr) ' (Xlye + Xkys), (8)

where Xpg is the same as X, except that the last column vector z, is
replaced by zg.

If we include the study variable also as an explanatory variable while
running the auxiliary regression of z. on Z., the imputed values for the
elements of x, are given by

-1
b = (52 50) (%)

Yele YeYe Yele

A b\ ([ Za.
- [Z*ay*]<bl C) ((ULIC)

_ LBQMyc _
= 2.2.2)  Zx. + A (y« — Z(Z.Z.)" " ZLy.)
! My
= op+ " (ye — Z(Z.2.) " Z0ye) 9
Ry, ( ( ) Ye) (9)

where

M =1-2.(2.2)"Z,

A = (ZéZc)il + (Z/Zc)ilzéycyézc(zézc)il7

YeMy. ¢
1
b = — 2717y,
yéMyc( C ) cy

1
yL.My.
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Substituting #. for z, in (4) and then applying least squares to the
resulting repaired model, we obtain the following estimator of 3:

B=(X.Xc+ XL X)X Lye + Xly.), (10)

where X* is same as X, except that z, in X, is replaced by Z.,.

It may be noticed that nonstochastic quantities are used to replace the
missing values in the traditional first order regression method. In the
proposed procedure involving a modification of the first order regression
method, we substitute stochastic quantities for missing values. Thus xg is
a fixed vector while Z, is a random vector.

3. EFFICIENCY PROPERTIES

It is easy to see that the estimator b. based on complete observations
alone is unbiased for 8 with variance covariance matrix as

V(bc) = E(bc - ﬁ)(bc - 6)l
= (X! X)L, (11)

Next, we observe that the estimator bgr is biased with bias vector and
mean squared error matrix as

B(br) = E(br —B)
(X! X+ XpXp) ' Xi0, (12)
M(bg) = E(bg —B)(br — )
= X (X! X+ XpXp) '+ (XX + X Xp) !
X0 Xp(X! X+ XpXRp)!, (13)

where
(X~ Xn)f. (14)

Toutenburg, Heumann, Fieger and Park (1995) have analyzed the effi-
ciency properties of b. and bgr in detail and have deduced conditions under
which bg is superior to b, with respect to different weak and strong mean
squared error criteria.

Deriving the exact distributional properties of the estimator 3 arising
from our proposed procedure, it can be easily visualized, will be a fairly
intricate excercise and may not lead to any meaningful and clear conclu-
sion regarding the efficiency properties of ﬂA Let us therefore consider its
asymptotic properties.

0= (zs —xR)=
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If we employ large sample asymptotic theory, we need to assume either
my, — 00 or m, — 0o or both m, — oo and m, — oco. The first assump-
tion is obviously not an interesting proposition. It specifies a situation
where the number of complete observations is few and the number of miss-
ing observations grows large. Just the reverse is true in case of second
assumption, that is, the number of missing observations is small while the
number of complete observations grows large. In other words, the model
has a tendency in which missing observations are given lesser importance
as the number of complete observations increases. Such a situation may
arise in many practical applications. The third assumption is equally in-
teresting and may be a tenable proposition in some applications because in
this case missing observations as well as complete observations both grow
large possibly with varying speed. We shall therefore restrict our attention
to second and third specifications of asymptotic theory.

3.1. Properties When Both m. And m, Grows Large

For analyzing the properties of estimators under the specification that
both m. and m, grow large, we introduce a quantity m defined as

m = min{m,, m.} (15)

so that m tending to infinity is equivalent to both m. and m, tending to
infinity.

Next, we assume the asymptotic cooperativeness of explanatory vari-
ables, i.e., both (micXéXc) and (miX;X*) tend to finite nonsingular ma-
trices as m tends to infinity.

Under the above specification, it follows from (12) that the estimator
br is biased and in fact inconsistent. Its mean squared matrix to order
O(m™!) has the same expression as (13).

For the estimator [3, we have the following results which are derived in
Appendix.

THEOREM 1. The bias vector of B up to order O(m™2) is null. Its mean
squared error matrixz up to order O(m=1) is given by

M(B) = o*QX' X 0, (16)

where Q = (X! X+ X, X, + %ee’)_l with e as K X 1 vector having first
(K — 1) elements zero and last element one.

Now comparing b., bp and B, we observe that b. is unbiased and consis-
tent for § but it ignores the available set of m, observations. The estimator
br is neither unbiased nor consistent although it utilizes the additional m.,
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observations on (K — 1) explanatory variables only. The estimator £ not
only utilizes the additional m, observations on (K — 1) explanatory vari-
ables but also uses the m, observations on study variable. This improves
the performance of estimators. Thus our proposed estimator is consistent
but biased.

Next, let us compare the estimators with respect to the criterion of mean
squared error matrix to order O(m~1!). Restricting attention to consistent
estimators b, and (3, we observe from (11) and (16) that

V(b)) — M(B)=c*Q[Q (X X.)' Q" — X/ X.] Q. (17)

Substituting the expression for =1 inside the square brackets, it is seen
that the expression for matrix difference is positive definite. This implies
that the biased estimator B is more efficient than the unbiased estimator
be.

As far as the comparison of bg with b, and B is concerned, we feel
that it is rather inappropriate and improper to compare the asymptotic
approximations for bias vectors and mean squared error matrices of an
inconsistent estimator with a consistent estimator. We have therefore not
done it. At this point, it may be mentioned that the comparative study
of b, and br conducted by Toutenburg, Heumann, Fieger and Park (1995)
remains meaningful and valid because they have employed exact, and not
asymptotic, expressions.

3.2. Properties When m. Grows Large While m, Stays Fixed

In order to study the asymptotic properties under the present assump-
tion, we assume that explanatory variables in (1) or (3) are asymptotically
cooperative in the sense that V., = (miX ’X.)~! tends to a finite nonsin-
gular matrix as m, tends to infinity.

Using (3), (4) and (9), it can be easily seen from (10) that

mE (B — B) = omg TV, Xleo + O, (mg ), (18)

whence it follows that the asymptotic distribution of mcé (B — ) is multivari-
ate normal with mean vector 0 and variance covlariance matrix 012Vc which
is the same as the asymptotic distribution of mé (b, — 8) and mé (bg — 3).

It is thus observed that all the three estimators, viz., b., bg and B are
asymptotically equivalent in the sense of possessing same asymptotic dis-
tribution. Let us therefore consider higher order approximations.

Tt is easy to see from (12) and (13) that the bias vector of bg to order
O(m;1) is

B(bg) = mﬁvcxga, (19)
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while the mean squared error matrix to order O(m_?) is given by

1
WVC (0> X XR + a®X00' XR) V.,

M(br)

2
g
— V. +
me

L Vo [o2 XX
= — Ve —5 Vel|O
Me m2 RAR

+X§%(X* —XR)ﬂﬁ/(X* —XR)/XR]VC (20)

Similar results for the estimator 3 are derived in Appendix and presented
below.

THEOREM 2. The estimator [3 is unbiased up to order O(m'). An as-
ymptotic approrimation for its mean squared error matriz to order O(mgz)
is given by

N 2 2 202m, (A — o2
M(ﬁ): LVC—F%VC Mee’—l—W—FW’ Ve, (21)
me m?2 Ao
where
1 A —o?
W = X.Z.Vo(—Z/X.) + MX,fﬂe'
me A
A\ — 2
= xixp+ AT - xe (22)

with X = (0% + %?x’cMa:c) and e as K x 1 vector with first (K —1) elements
zero and last element one.

Comparing the estimators b., brp and B with respect to the criterion of
bias to order O(m;!), we observe that b, and 3 are unbiased while b is
not unless z, and zi turn out to be numerically same.

Looking at the expressions (20) and (21), it is difficult to draw any clear
inference from the comparison of b, bg and B with respect to the criterion
of mean squared error matrix to the order of our approximation.

4. SOME REMARKS

We have considered the problem of estimating the coefficients in a lin-
ear regression model with some missing observations on some of the ex-
planatory variables. To keep the exposition simple, we have assumed that
missing observations pertain to one explanatory variable only. Our inves-
tigations can, however, be easily extended to the case when there are more
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than one explanatory variable with possibly varying numbers of missing
observations.

Recognizing that the application of least squares procedure to the entire
model does not lead to feasible estimators for the regression coefficients,
two estimation strategies are chiefly considered. The first strategy ignores
the incomplete observations fully and involves application of least squares
to complete data set only. This kind of complete discard of information
contained in the incomplete data set may not always be a satisfactory
proposition. The second strategy comprises substituting imputed values for
the missing observations and then applying least squares to completed or
repaired data set. For finding the imputed values, the method of first order
regression is considered and two alternatives are presented. One provides
nonstochastic values for imputation through the conventional method while
the other yields stochastic values through a modification in the conventional
method.

We have investigated the asymptotic properties of the three estimation
procedures mentioned above. When both the number of complete observa-
tions and the number of incomplete observations are large, it is observed
that the conventional first order regression method yields inconsistent and
biased estimators of regression coefficients while the simple strategy of ig-
noring the incomplete data set completely produces consistent and unbiased
estimators. On the other hand, the modified first order regression method
gives consistent and biased estimators but it is asymptotically more effi-
cient than the method which uses only complete data set. It is interesting
to note that the proposed modification overcomes the problem of incon-
sistency of estimators arising from the conventional first order regression
method.

When only the number of complete observations grows large while the
number of incomplete observations stays fixed, our investigations have re-
vealed that all the three estimation procedures are asymptotically equiv-
alent in the sense that they share the same distributional properties as-
ymptotically and thus do not permit us to prefer one over the other. We
have therefore considered higher order asymptotic approximations. These
approximations do not provide us any clear inference regarding the supe-
riority of one estimation procedure over the other. Perhaps an elaborate
simulation experiment may be helpful to examine this aspect. It will also
be interesting to investigate the impact of the presence of multicollinearity
of varying degree on the lines of Hill and Ziemer (1983). Applications to
some concrete data sets involving possibly some discrete variables may also
shed some light on the efficiency properties. Some work in these directions
is in progress and will be reported in future.
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APPENDIX A

In order to derive the results stated in Theorem 1, we first observe that

(y« — 2.(2.2:) " ZLy.)
= a(zs— Z(Z.Z:.)  Za,) + o€ — 0 Z(ZLZ:) " Zle,
= a(zs —TR) +0€x —0Z(Z2.2.) " ZLe... (A1)

_1
Notice that the last term on the right hand side is O,(m. ?) while the
other terms are of order O,(1).

1
Writing v = (-:€.e. — 1) and noticing that v has order O,(m. ?), we

me
can express

.’L‘/cMyc o 1 _ yéM<yc — ax,)

yeMy. ayeMye.

1 ooy, Me,

a  (a2xlMz.+ o?m.) + 2aocx . Me. + o?mev) — 02, Z.(Z! 7)1 Z e,
202, Me. + o’>mev 02, Z2.(Z.2.)"  Z'e, !

1 /
— Mzx. |1 - )
o mc/\xC x + me me

(oge7

where A = (02 + ::L—sz:MxC)
Expanding the expression inside the square brackets, we find

r,My. 1 o«

yLMy. a me

zMe, + O,(m; ). (A.2)

Using (A.1) and (A.2) in (9), we get

. o
T, = (xwrae*)
o [1 , a? o 1
— aZ*Vchec‘FTxcMec(e"'ae*) + Op(m_7)

from which we can express

T — AR -1
X =(Xs+ an) mCU + Op(m; "), (A.3)
where
Uo [0 6*]
1 , a? o
U= 1|0 —ZV.Ze.+—x.Me.(0+ —¢.)| ,
! A !



300 H. TOUTENBURG ET AL

0 denoting a null matrix of order m, x (K —1).
It may be recalled that both m. and m, are large. It is equivalent to
saying that m is large where m denotes the minimum of m. and m,, i.e.,

me if me < my
m = .
my if me > m,

Now from (A.3), it is easy to see that
(XiXo + XIX)TH = Q4 0p(mH),
so that we can express
(B=B) = (XiXo+ X% [o(Xleo + Xle) + XU(X. - X.)5]
= oQXe. + Op(m_l) .
Thus we have bias vector up to order O(m_%) as null and mean squared
error matrix up to order O(m=!) as 02QX. X Q.

This establishes the results of Theorem 1.
Using (A.3) in (10), we have

(B-B) = (X[Xc+ XL X)) (Xlye + Xly.) — B
(X0 X+ XLX) 7! [o(Xleo + Klew) + XU(X. - X))

=i+ s+ O,(m.?), (A.4)
where
Ty = e
o o o? o
n_g = RVC(X; + EU(S) |:Z*‘/cZé6c + TJJICM%(H + ae*)} :

Here the suffixes of 1 indicate the order of magnitude in probability.
As E(nfé) = 0, the bias vector to order O(m_ 1) is equal to a null vector.

Further, the mean squared error matrix to order O(m_2) is given by
M(B) = B(n_yn" )+ E(_gn’, +n_10"s). (A.5)

It is easy to see that
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For the second term on the right hand side, we observe that

3
EV.X! [Z*vczgec + %x’cMec(H + Ze*)} XV,

o
X

3
EVU} {Z*VCZéec + Sl Me(60+ Jen] AR
(6%

= V.x/ [Z*VCZQJr Hx'cM} XV,

alom,

Using these, we obtain E(nfgn’il). The last term on the right hand side
2
of (A.5) is its transpose. Substituting these and using

T MX, = (xlMZ. x.Mz.)

= x .Mz
_ (/\*02)7”6 /
- a2 ©

we obtain the result (21) stated in Theorem 2.
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