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1. INTRODUCTION

It is well known that financial returns are non-normal and tend to have
fat-tailed distributions. Mandelbrot (1963) strongly rejected normality as
a distributional model for asset returns, conjecturing that financial return
processes behave like non-Gaussian stable processes (commonly referred
to as “stable Paretian” distributions). The autoregressive conditional het-
eroskedastic (ARCH) models proposed by Engle (1982) and the generalized
GARCH proposed by Bollerslev (1986) capture the extra probability mass
in the tails. The appealing feature of incorporating conditional volatility
is that it allows for a changing distribution over time. However, the distri-
bution of conditional residuals is still not normal (Bollerslev, 1987). The
implication for the commonly used risk measure Value-at Risk (VaR) is that
risk is still underestimated at high quantiles for fat-tailed results. More-
over, GARCH models also fail to model the asymmetric effect of volatility,
where negative return shocks generated by bad news have a larger thrust
in increasing future volatility than positive return shocks caused by good
news.

One innovation has focused on the power term by which the data are to
be transformed. Ding, Granger and Engle (1993) introduced a generalized
asymmetric version of the power ARCH (APARCH) model to capture the
potentially asymmetric effects of return shocks on future volatility. To
further enhance the robustness of the estimation results with respect to
non-normality, the errors are considered to follow a t-distribution, called
Student-APARCH. Huang and Lin (2004) analyzed the VaR for Taiwan
stock data. They assumed the asset returns have fat tails and volatility
clustering. At lower VaR confidence levels, the Normal-APARCH model is
preferred. However, at high confidence levels, the VaR forecast obtained
by the Student-APARCH model is more accurate.

Chiang and Doong (1999) used a generalized M-GARCH(1,1) process
and found evidence to reject the hypothesis that the stock excess returns
are independent of the real and financial volatilities. The stock excess
returns are explained by the predicted volatility of macrofactors and the
conditional standard deviation. The volatility of macrofactors consists of
the volatilities arising from real (internal) and financial (external) shocks,
whereas the time-series volatility is due to previous shocks. The stock
excess return is associated with the volatility of macrofactors. The finance
industry is more sensitive to a change in economic conditions and has been
the leading industry on the Taiwan Stock Exchange (TSE) in the past
decade.

In a study of the TSE, Ammermann (1999) found that the stocks trading
exhibit nonlinearity and nonstationarity. To capture the full-sample non-
linear serial dependencies found within a number of financial time series,
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the Normal-GARCH, t-GARCH, and STAR (Student’s t autoregressive)
models were fitted and compared with the dynamic linear models. The in-
ferences obtained varied from model to model, suggesting the importance
of adequately accounting for nonlinear serial dependencies (and of ensuring
data stationarity) when studying financial time series.

Rachev and Mittnik (2000) give a very detailed description on the stable
Paretian models in finance. The stability property is highly desirable for
asset returns. In the context of portfolio analysis and risk management,
the linear combinations of different return series follow again a stable dis-
tribution. In fact, the Gaussian law shares this feature, but it is only one
particular member of a huge class of distributions, which also allows for
skewness and heavy tails.

In this paper, we study industry stock index return data with respect
to: (1) non-Gaussian, heavy-tailed and skewed distributions, (2) volatility
clustering (ARCHeffects), (3) temporal dependence of the tail behavior,
and (4) short- and long-range dependence. Stable models allow us to gen-
eralize Gaussian-based financial theories to build a more general framework
for financial modelling. Since asset returns exhibit temporal dependence,
the conditional distributions become of interest. We study the daily return
distributions for 22 industry stock indexes on the TSE under the uncon-
ditional homoskedastic independent, identically distributed (iid) and the
conditional heteroskedastic GARCH (varying-conditional-volatility) cases.
Two distribution hypotheses were tested: the Gaussian and the stable Pare-
tian distribution. The stable Paretian distribution performed better than
that of the Gaussian distribution.

In Section 2, we state the probability models and measures applied in
this paper. In Section 3, the numerical analyses results are demonstrated,
followed by a back-testing example in Section 4. The conclusion is provided
in Section 5.

2. PROBABILITY MODELS

The class of autoregressive moving average (ARMA) models is a natural
candidate for conditioning on the past of a return series. These mod-
els have the property that the conditional distribution is homoskedastic.
Moreover, since financial markets frequently exhibit volatility clustering,
the homoskedasticity assumption may be inadequate. On the contrary, the
conditional heteroskedastic models, such as ARCH and the GARCH mod-
els, combining with an ARMA model, referred to as an ARMA-GARCH
model, are common in empirical finance. It turns out that ARCHtype
models driven by normally distributed innovations imply unconditional dis-
tributions which themselves possess heavier tails. However, many studies
have shown that GARCH-filtered residuals are themselves heavy-tailed, so
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that stable Paretian distributed innovations (“building blocks”) would be
a reasonable distributional assumption.

A random variable X is said to have a stable distribution if there are
parameters: α ∈ (0, 2], β ∈ [−1, 1], σ ∈ [0,∞), µ ∈ R such that its
characteristic function has the following form:

ϕX(θ) =
{

exp{−σα|θ|α(1− iβ(sign θ) tan
(

απ
2

)
+ iµθ} if α 6= 1

exp{−σ|θ|(1 + iβ 2
π (sign θ) ln |θ|) + iµθ} if α = 1

In the general case, no closed-form expressions are known for the prob-
ability density and distribution functions of stable distributions. The pa-
rameter α is called the index of stability, which determines the tail weight
or densitys kurtosis. The parameters β, σ, and µ are called the skewness
parameter, scale parameter, and location parameter, respectively. Stable
distributions allow for skewed distributions when β 6= 0; when β is zero,
the distribution is symmetric around µ. Stable Paretian laws have fat tails,
meaning that extreme events have high probability relative to the normal
distribution, when α < 2. The Gaussian distribution is a stable distribu-
tion, with α = 2. (For more details on the properties of stable distributions
see Samorodnitsky, Taqqu (1994).)

The general form of the ARMA(p,q)-GARCH(r,s) model is:

Rt = C +
p∑

i=1

aiRt−i +
q∑

j=1

bjεt−j + εt

εt = σtδt

σ2
t = K +

r∑
k=1

ωkε2
t−k +

s∑
l=1

νlσ
2
t−l

where ai, bj , ωk, νl, C, K are the model parameters, for i = 1, . . . , p,
j = 1, . . . , q, k = 1, . . . , r, l = 1, . . . , s. δ′ts are called the innovations
process and are assumed to be iid random variables which we additionally
assume to be either Gaussian or stable Paretian. An attractive property of
the ARMA-GARCH process is that it allows a time-varying volatility via
the last equation in the above model.

We test the hypotheses in two cases. In the first case, we assume that
daily return observations are iid. In the second case, the daily return obser-
vations are assumed to follow a GARCH(1,1) model. The first case concerns
the unconditional homoskedastic distribution model while the second case
belongs to the class of conditional heteroskedastic models.

For both cases, we verify whether the Gaussian hypothesis holds based
on the Kolmogorov distance (KD):

KD = sup
x∈R

|Fe(x)− F (x)|,
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where Fe(x) is the empirical sample distribution and F (x) is the cumulative
distribution function of the estimated parametric density and emphasizes
the deviations around the median of the distribution.

For both the iid and the GARCH cases, we compare the goodness-of-fit
for the Gaussian and the more general stable Paretian hypotheses. We
use two goodnessof- fit measures for this purpose, the KD-statistic and
the Anderson-Darling (AD) statistic. The AD-statistic accentuates the
discrepancies in the tails and is computed as follows:

AD = sup
x∈R

|Fe(x)− F (x)|√
F (x)(1− F (x))

.

The data used in this study consist of the daily returns for 22 industry
stock indexes (sectors) from the entire TSE. The industries are listed in the
first column of Table 1. The sample period of this research spans January
1999 through December 2002. Industry stock returns are defined as the
first difference in the log of daily indexes, R(t) = log(S(t)/S(t− 1)), where
S(t) is the value at t (the returns are adjusted for dividends).

3. MAIN RESULTS

There are several methods that can be employed for estimating the pa-
rameters of stable distributions. The most popular methods are Maxi-
mum Likelihood (ML), Fourier Transform (FT), and Fast Fourier Trans-
form (FTT), see Rachev and Mittnik (2000), Rachev (2003). Only ML
easily allows for estimation of the skewness parameter β; it is also the most
accurate method. However it is not the fastest.

3.1. Unconditional homoskedastic iid model
In the simple setting of the iid model, we have estimated the values

for the four parameters of the stable Paretian distribution using the ML
method. Summary statistics of the various statistical tests and parameter
estimates for the entire sample are provided in Table 1.

For the in-sample analyses, we use the standard Kolmogorov-Smirnov
test based on the KD. We observe that 59.09% and 27.27% of the indus-
try sectors for which normality is rejected at confidence levels 95% and
99%. On the contrary, 22.73% and 4.55% of the sectors for which the
stable Paretian distribution is rejected at confidence levels 95% and 99%.
Therefore we have evidence that the stable-Paretian hypothesis is rejected
in much fewer cases, hence the stable Paretian distribution fits better than
the normal distribution.

For every industry index in our sample, the KD in the stable Paretian
case is below that in the Gaussian case. The same is true for the AD. The
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TABLE 1.

The MLEs and KS test results for 22 industrial stocks, iid model.

Industry α β σ µ KD KD AD AD

normal stable normal stable

Cement 1.9906 1.0000 0.0172 −0.0005 0.0516 0.0491 0.1189 0.1088

Foods 1.8690 0.1744 0.0123 −0.0006 0.0457 0.0291 0.1281 0.0682

Plastics 1.8390 0.2939 0.0150 0.0004 0.0392 0.0253 0.1315 0.0956

Textiles 2.0000 0.9777 0.0151 −0.0003 0.0348 0.0353 0.0754 0.0739

Ele. & Machinery 2.0000 0.1657 0.0137 −0.0004 0.0266 0.0283 0.1488 0.0690

Ele . Appliance & Cable 2.0000 0.9547 0.0178 −0.0007 0.0356 0.0357 0.0722 0.0723

Chemicals 2.0000 0.6171 0.0143 −0.0004 0.0277 0.0288 0.1630 0.0736

Glass and Ceramics 1.9821 1.0000 0.0159 −0.0004 0.0440 0.0386 0.1190 0.1296

Paper and Pulp 2.0000 0.9959 0.0170 −0.0004 0.0514 0.0520 0.1087 0.1098

Steel and Iron 1.8060 0.4584 0.0121 0.0004 0.0469 0.0219 0.2016 0.0885

Rubber 2.0000 0.9644 0.0171 −0.0003 0.0304 0.0312 0.0836 0.0844

Automobile 1.6070 0.2436 0.0122 0.0007 0.0644 0.0296 0.2122 0.1272

Electronics 2.0000 0.9996 0.0160 −0.0002 0.0434 0.0443 0.0927 0.0950

Construction 1.9707 1.0000 0.0162 −0.0011 0.0515 0.0433 0.1446 0.1319

Transportation 1.8686 0.4946 0.0151 0.0002 0.0592 0.0397 0.1528 0.0964

Tourism 1.7663 0.4540 0.0084 −0.0005 0.0540 0.0332 0.6864 0.0885

Wholesale and Retail 1.7960 0.1113 0.0108 −0.0004 0.0448 0.0244 0.2566 0.0800

Cement and Ceramics 1.9969 1.0000 0.0155 −0.0005 0.0489 0.0484 0.1080 0.1071

Plastics and Chemical 1.8899 0.2876 0.0139 0.0002 0.0423 0.0296 0.1621 0.0935

Electrical 2.0000 0.9998 0.0157 −0.0002 0.0429 0.0413 0.1000 0.1022

Finance 1.8247 0.5351 0.0135 0.0002 0.0574 0.0262 0.1634 0.0969

Others 1.8990 0.0183 0.0127 −0.0003 0.0374 0.0294 0.1070 0.0790

mean 1.9139 0.6248 0.0144 −0.0002 0.0446 0.0348 0.1608 0.0941

median 1.9764 0.5761 0.0150 −0.0003 0.0444 0.0322 0.1298 0.0942

Q1 1.8464 0.2892 0.0129 −0.0005 0.0378 0.0289 0.1073 0.0792

Q3 2.0000 0.9987 0.0160 0.0001 0.0515 0.0409 0.1628 0.1058

percentage of sectors 59.09% 22.73%

rejected at 95%

percentage of sectors 27.27% 4.55%

rejected at 99%
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KD implies that for our sample there is a better fit of the stable Paretian
model around the center of the distribution while the AD implies a better
fit in the tails. The substantial difference between the AD computed for the
stable Paretian model relative to the Gaussian model strongly suggests a
much better ability for the stable Paretian model to forecast extreme events
and confirms an already noticed phenomenon: the Gaussian distribution
fails to describe observed large downward or upward asset price shifts. That
is, in reality extreme events have larger probability than predicted by the
Gaussian distribution.

3.2. Conditional heteroskedastic GARCH model
In this section we consider the GARCH(1,1) model for the 22 industry

indexes daily return time series. The model parameters are estimated us-
ing the ML method assuming the normal distribution for the innovations.
In this way, we maintain strongly consistent estimators of the model pa-
rameters under the stable Paretian hypothesis since the index of stability
of the innovations is greater than 1, see Rachev and Mittnik (2000) and
references therein. After estimating the GARCH(1,1) parameters, we com-
puted the model residuals and verified which distributional assumption is
more appropriate.

A summary of the computed statistics for the residuals of the GARCH(1,1)
model is reported in Table 2. Generally, the results imply that the stable
Paretian assumption is more adequate as a probabilistic model for the in-
novations compared to the Gaussian assumption.

We test the hypotheses for the conditional heteroskedastic GARCH(1,1)
model. As reported in Table 2, 36.36% and 4.55% of the sectors for which
stable distribution is rejected at confidence levels 95% and 99%. In con-
trast, as can be seen in Table 2, less than 5% of the industry indexes
for which the stable distribution is rejected at confidence levels 95% and
99%. Once again, we have evidence that the stable-Paretian hypothesis
is rejected in much fewer cases, hence the stable Paretian distribution fits
better than the normal distribution.

We observe that the normal distribution is rejected in fewer cases in the
GARCH case than in the iid case. A similar situation is observed for the
stable distribution.

4. A BACK-TESTING EXAMPLE

In this example, an empirical comparison between the normal ARMA-
GARCH (conditional homoskedastic, i.e. constant-conditional-volatility)
and the stable ARMAGARCH (conditional heteroskedastic, i.e. varying-
conditional-volatility) models is presented. We performed a back-testing
analysis for the electrical industry, comparing the performance of the sim-
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TABLE 2.

The MLEs and KS test results for 22 industrial stocks, GARCH(1,1) model.

Industry α β σ µ KD KD AD AD

normal stable normal stable

Cement 1.9606 0.5767 0.6935 0.0072 0.0445 0.0375 0.1383 0.0821

Foods 1.9056 0.0966 0.6739 −0.0005 0.0366 0.0247 0.2550 0.0814

Plastics 1.9075 0.2629 0.6779 0.0018 0.0342 0.0253 0.1106 0.0861

Textiles 1.9998 −0.9314 0.7068 −0.0148 0.0293 0.0293 0.0796 0.0800

Elec. & Machinery 1.9855 −1.0000 0.6987 −0.0181 0.0217 0.0236 0.3045 0.0636

Elec Appliance & Cable 2.0000 0.9962 0.7068 −0.0111 0.0272 0.0264 0.0551 0.0536

Chemicals 1.9821 −1.0000 0.6987 −0.0236 0.0193 0.0209 0.2392 0.0560

Glass and Ceramics 1.9494 1.0000 0.6904 −0.0029 0.0383 0.0259 0.1232 0.0604

Paper and Pulp 2.0000 0.0527 0.7069 −0.0150 0.0459 0.0460 0.0960 0.0961

Steel and Iron 1.8406 0.4880 0.6473 0.0223 0.0409 0.0196 0.3650 0.0771

Rubber 2.0000 0.9952 0.7068 −0.0028 0.0251 0.0255 0.0836 0.0826

Automobile 1.7695 0.2465 0.6267 0.0267 0.0511 0.0304 0.3947 0.0972

Electronics 1.9934 −1.0000 0.7041 −0.0197 0.0366 0.0375 0.0973 0.1013

Construction 1.9407 0.8549 0.6888 0.0151 0.0446 0.0291 0.1202 0.0863

Transportation 1.9359 0.2575 0.6855 0.0070 0.0423 0.0368 0.1418 0.0855

Tourism 1.8682 0.6649 0.6605 0.0056 0.0504 0.0255 0.2295 0.0652

Wholesale and Retail 1.9285 −0.2314 0.6814 −0.0269 0.0338 0.0259 0.1806 0.0789

Cement and Ceramics 1.9551 0.2501 0.6904 −0.0041 0.0434 0.0386 0.1585 0.0805

Plastics and Chemical 1.9328 0.2064 0.6847 −0.0085 0.0339 0.0265 0.1376 0.0855

Electrical 1.9909 −1.0000 0.7029 −0.0221 0.0358 0.0383 0.1079 0.0892

Finance 1.9205 0.5158 0.6820 0.0129 0.0491 0.0345 0.1495 0.0896

Others 1.9591 −0.0153 0.6908 −0.0269 0.0318 0.0304 0.2550 0.0759

mean 1.9421 0.1039 0.6866 −0.0044 0.0371 0.0299 0.1710 0.0797

median 1.9494 0.2465 0.6904 −0.0041 0.0366 0.0291 0.1418 0.0814

Q1 1.9225 −0.1774 0.6816 −0.0173 0.0323 0.0255 0.1086 0.0762

Q3 1.9895 0.5614 0.7019 0.0066 0.0443 0.0362 0.2250 0.0862

percentage of sectors 36.36% 4.55%

rejected at 95%

percentage of sectors 4.55% 0%

rejected at 99%
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Figure 1:

Electrical industry out-of-sample comparisons between normal and stable
ARMA(1,1)-GARCH(1,1) models.

1

FIG. 1. Electrical industry out-of-sample comparisons between normal and stable
ARMA(1,1)-GARCH(1,1) models.

pler ARMA(1,1)-GARCH(1,1) model from the ARMAGARCH family with
stable and normal innovations using the VaR risk measure at 99% confi-
dence level. The choice of p = q = r = s = 1 proved appropriate because
the serial correlation in the residuals disappeared. The performance is com-
pared in terms of the number of exceedances for the VaR measure; that is,
how many times the forecast of the VaR is above the realized asset return.
We verify if the number of exceedances is in the 95% confidence interval
for the corresponding back-testing period.1

The VaR exceeding model comparison between normal and stable distri-
butions is performed in Figure 1. In the last 250 days of the study period,
the number of exceedances is 3 for the stable, 4 for the normal, and the
95% confidence bound is [0, 5]. The normal and stable ARMA-GARCH
models both demonstrate good performance.

Since the normal distribution is a special case of general stable distri-
bution, one may think that the stable model should produce better VaR
estimates than the normal distribution (no matter what confidence level

1With 250 observations, the “exact” 95% confidence interval for the number of ex-
ceedances of the 99% VaR is [0, 5.6], but since we need an integer for the upper bound,
we round it to 5. The “exact” interval will be [0, 5] if the confidence level is about 88.6%.
Furthermore, the “exact” confidence intervals would be [0, 4] and [0, 3] if the confidence
level is 65.6% and 24.4%, respectively.
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is) all the time. But this is not true. The stable distribution contains
four parameters, the normal distribution only two. Therefore in the out-of
sample analysis, the forecasting properties of the two-parameter-model can
beat that of the four-parameter-model in some cases.

5. CONCLUSIONS

We investigated the empirical daily return distribution properties of the
22 industry stock indexes on the TSE. Our in-sample analyses show that
we can reject the Gaussian and the stable Paretian hypotheses at both
the 95% and 99% confidence levels using the iid model. But the stable
Paretian hypothesis is not rejected at both the 95% and 99% confidence
levels in the GARCH(1,1) model, whereas the Gaussian is still rejected at
the 95% and 99% confidence levels. Therefore the empirical evidence is
overwhelming that stable laws are superior to the Gaussian distribution
for the market; we do observe heavy tails from the empirical data. This
finding is consistent with equity markets in other countries and in financial
markets for other asset classes.

For the out-of-sample performance the empirical evidence suggests that
the normal ARMA(1,1)-GARCH(1,1) model is reasonable, based on the
number of exceedances observed. There is no contradiction in this find-
ing because the normal ARMA(1,1)-GARCH(1,1) is already a heavy-tailed
model. Nevertheless, we can say that the stable ARMA(1,1)-GARCH(1,1)
is still better because the number of exceedances is 3, which is closer
to the average value of about 2.5 exceedances. The fact that the nor-
mal ARMA(1,1)-GARCH(1,1) is doing practically as good as the stable
ARMA(1,1)-GARCH(1,1) should be alarming, because the normal
ARMA(1,1)-GARCH(1,1) model is unconditionally heavy-tailed. So the
stable ARMA-GARCH has the flexibility to add a bit of heavy-tailedness,
but in some cases that might not lead to a very significant improvement of
the Gaussian ARMA-GARCH model.
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