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This paper studies optimal consumption and portfolio choice in a Merton-
style model with incomplete information when there is a distinction between
ambiguity and risk. The latter distinction is afforded by adoption of recursive
multiple-priors utility. The fundamental issues are: (i) How does the agent
optimally estimate the unobservable processes as new information arrives over
time? (ii) What are the effects of ambiguity and incomplete information on
behavior? This paper shows that it is optimal to first use any prior to perform
Bayesian estimation and then to maximize expected utility with that prior
based on the resulting estimates. Finally, the paper shows that a hedging
demand arises that is affected by both ambiguity and estimation risk.
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1. INTRODUCTION

In economic analysis, it is typically assumed that a decision maker’s be-
liefs are represented by a single probability measure. Frank Knight (1921)
emphasizes the distinction between risk where there are probabilities to
guide choice, and ambiguity where likelihoods of events are too imprecise to
be adequately summarized by probabilities. The Ellsberg Paradox (1961)
tells us that this distinction is behaviorally significant. This suggests that
there are two dimensions of the decision maker’s beliefs about the likeli-

* I would like to thank Jerome Detemple, Larry Epstein, and Ali Lazrak for helpful
comments. This paper was originally written in 2001. I have made no substantial
changes except that I have updated references.
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hoods of events: risk and ambiguity. In standard models, ambiguity is
neglected or it is assumed that the decision maker is indifferent to it.

Added motivation for the analysis to follow comes from the finance litera-
ture on incomplete information. In the real world, investors make consump-
tion and investment decisions based on information available from sources
such as newspapers, financial reports, and market data. It is unrealistic
to assume that they observe the driving uncertainty processes underlying
prices and returns. These unobservable processes (or parameters) must be
learned as new information arrives over time.

In the standard Bayesian analysis, the decision maker has a unique prior
over the unobservable processes. The prior then is updated by Bayes’ Rule
as new information arrives. Moreover, estimates of these processes are
obtained by Bayesian estimation. This Bayesian approach emphasizes the
effect of estimation risk on optimal behavior.

To incorporate ambiguity, this paper asks the following question: How
does a decision maker choose when he is averse to ambiguity and when his
information is incomplete?

The first step in addressing this question is to formulate a utility function
that permits the distinction between risk and ambiguity under incomplete
information. Chen and Epstein (2002) provide such a distinction under
complete information by generalizing Gilboa and Schmeidler’s (1989) static
model to a dynamic setting; they call their model recursive multiple-priors
utility.1 This paper adapts their formulation to an environment with in-
complete information. The resulting model of utility is applied to study a
single agent’s consumption and investment decisions in a continuous-time
Merton-style model with incomplete information.

The issues then become: (i) How does the agent optimally estimate the
unobservable uncertainty processes underlying asset prices as information
arrives over time. (ii) What are the effects of ambiguity and incompleteness
of information on behavior?

If one views the agent’s planning problem as a control problem, for the
standard expected utility model, there is a well-known separation principle
in the control literature (e.g., Flemming and Rishel (1975)). This principle
states that control under incomplete information can be solved separately
by the two independent problems of filtering (or estimation) and control
under complete information. It is natural to conjecture that this principle
is also true for recursive multiple-priors utility.

Because there is a unique prior under expected utility or risk-based utility
such as stochastic differential utility proposed by Duffie and Epstein (1992),
estimation is not a problem because standard Bayesian analysis applies.

1Epstein and Schneider (2003) develop an aximomatic foundation for recursive
muptiple-priors in a discrete-time framework with complete information.
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However, when the agent has multiple priors, it is not clear a priori how
to perform estimation: Can one perform Bayesian estimation using one of
the priors in the set? If so, which ones are suitable?

This paper shows that the separation principle still holds for recursive
multiple-priors utility. In particular, optimality is consistent with the use
of any measure in the set of priors to perform Bayesian estimation.

In an incomplete information environment, the key to the above results
is that (i) the set of priors is updated by applying Bayes’ Rule to each prior
in the set, and this leads to dynamic consistency; (ii) all measures in the
set of priors and their restrictions on the observation filtration are mutually
absolutely continuous. Thus given that the ‘true’ probability measure is
one of the priors, one can obtain Bayesian estimates of unobservable pro-
cesses using any measure in the set of priors and equivalently rewrite the
agent’s budget constraint in terms of these estimates under the correspond-
ing measure. Accordingly, the agent’s optimization problem is transformed
into an environment with complete information and the preceding estima-
tion procedure is optimal.

With regard to the characterization of optimal consumption and portfo-
lio choice, I find that consistent with the separation principle, a two-step
procedure consisting of ordinary filtering and ordinary martingale methods
can be used to solve the agent’s problem.

Finally, I provide examples with logarithmic and power felicity functions
that deliver closed form solutions. I show that under complete information
there is no hedging demand even when ambiguity is present. The effect
of ambiguity is that the agent myopically holds a mean-variance efficient
portfolio but with distorted mean values of asset returns. In contrast,
there is a hedging demand under incomplete information. This demand is
affected by both ambiguity and estimation risk.

1.1. Related Literature
Chen and Epstein (2002) formulate recursive multiple-priors utility in

continuous time. They also apply this utility to a Lucas-style representative
agent model to study asset pricing implications. Epstein and Miao (2000)
apply recursive multiple-priors utility to study a heterogeneous agent model
to address the consumption home bias and equity home bias puzzles. Both
of these papers assume complete information.

There is a large literature studying consumption and portfolio choice with
incomplete information in the expected utility framework (see Bawa, Brown
and Klein (1979), Detemple (1986), Gennotte (1986), Karatzas and Xue
(1991), Feldman (1992), Lakner (1995), Brennan (1998), Lakner (1998),
Barberis (2000), Karatzas and Zhao (1998), and Xia (2000) and the refer-
ences cited therein). Cvitanic et al. (2000) study the corresponding prob-
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lem for stochastic differential utility. This paper adds to this literature
using recursive multiple-priors utility.

My model is related to a series of papers by Hansen and Sargent and their
coauthors (see Anderson et al. (2003), Cagetti et al. (2002), Hansen et al.
(2006) and Hansen and Sargent (2001)). These papers study models of
robust control where the decision maker fears model uncertainty and seeks
robust decision-making, which are also motivated in part by the Ellsberg
Paradox.2

1.2. Outline
The paper proceeds as follows. Section 2 defines recursive multiple-priors

utility under incomplete information. Section 3 applies this utility to study
optimal consumption and portfolio choice in a Merton-style model with
incomplete information. Section 4 provides examples that deliver explicit
solutions. Proofs are relegated to an appendix.

2. RECURSIVE MULTIPLE-PRIORS UTILITY

This section adapts Chen and Epstein (2001) and defines recursive multiple-
priors utility under incomplete information that also conforms with the
axiomatization in Epstein and Schneider (2003).

2.1. Information Structure
Time is continuous in the finite horizon [0, T ]. There is a complete filtered

probability space (Ω,FT , {Ft}Tt=0, P ) on which a d′-dimensional standard
Brownian motion on Rd′ W = (W 1, . . . ,W d′)ᵀ is defined.3 The filtration
{Ft}Tt=0 or simply {Ft} represents complete information. The probability
measure P is a reference measure.

The decision maker’s available information is represented by a sub-filtration
{Gt} where each Gt ⊂ Ft. Assume that {Gt} is generated by some Rd-valued
observable diffusion process (yt). The following assumption is crucial and
common in the literature on incomplete information.

Assumption 1. There is a d-dimensional standard Brownian motion Ŵ
defined on the filtered probability space (Ω,GT , {Gt}, P ) such that the aug-
mented natural filtration generated by Ŵ is identical to {Gt}.

2See Hansen et al. (2006) and Hansen and Sargent (2001) for surveys of the ro-
bust control model and Epstein and Schneider (2001) for detailed comparison with the
recursive multiple-priors model.

3All processes to appear in the sequel are progressively measurable and all equalities
and inequalities involving random variables (processes) are understood to hold dP a.s.
(dt⊗dP a.s.). Denote by EQ[·] and EQ[·|·] the expectation and conditional expectation
taken with respect to the measure Q. When Q is suppressed it is understood that Q = P .
Finally, denote by | · | the Euclidean norm.
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Because the Brownian motion W is unobservable, I use the observable
Brownian motion Ŵ to define utility under incomplete information in the
sequel.

The Brownian motion Ŵ is often referred to as an innovation process.
It can be extracted from the decision maker’s observation process (yt) by
filtering theory.4 For example, suppose that d′ = 2, d = 1 and that the
decision maker observes (yt) but not (W 1

t ,W
2
t )ᵀ and (xt) where

dxt = xtdt+ dW 1
t and dyt = xtdt+ σydW 2

t .

Assume σY is a nonzero constant. Then Ŵ is delivered by

dŴt = (σy)−1(dyt − E [xt | Gt] dt).

Note that d′ might not be equal to d because the decision maker may
observe an arbitrary dimensional process (yt). However, I assume d = d′

in the later applications.

2.2. Consumption Space
There is a single perishable consumption good. A consumption process

c is nonnegative, real-valued, progressively measurable with respect to the
filtration {Gt} and square integrable (i.e. E

[∫ T
0
c2tdt

]
< ∞). Denote by C

the set of all consumption processes.

2.3. Utility
A recursive multiple-priors utility process (Vt(c)) for each c ∈ C is defined

by five primitives: information structure ((Ω,GT , {Gt}, P )) , the Brownian
motion Ŵ , the set of priors (probability measures) P on (Ω,GT ), the dis-
count rate β > 0, and the felicity function u : R+ → R.

The construction of the set of priors P is key.5 Take all measures in P to
be equivalent to P . They can be defined via their densities by use of density
generators and Girsanov’s Theorem. Specifically, define a density generator
θ = (θt) as an Rd-valued {Gt}-adapted process satisfying supt |θi(t)| ≤ κi,
i = 1, ..., d, where κ = (κ1, ..., κd)ᵀ ≥ 0. Denote by Θ the set of all such
density generators. This specification of Θ is referred to as κ-ignorance in
Chen and Epstein (2002).6

4See Liptser and Shiryayev (1977) for an introduction to filtering theory.
5Note that the set of priors is delivered as part of the utility representation from

behavior (see Epstein and Schneider (2003)). In applications, one must specify this set
so that it is consistent with behavior, e.g., some axiomatic foundation.

6See Chen and Epstein (2002) for more general specifications of Θ.
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Then each density generator θ generates a (P, {Gt})-martingale (zθt ) :

zθt = exp
{
−1

2

∫ t

0

|θs|2ds −
∫ t

0

θs · dŴs

}
, 0 ≤ t ≤ T , (1)

which determines a probability measure Qθ on (Ω,GT ) via

dQθ

dP
= zθT , , and

dQθ

dP

∣∣∣∣
Gt

= zθt . (2)

The set of priors is defined by

P = {Qθ : θ ∈ Θ and Qθ is given by (2)}. (3)

Because P expands as κ increases, one can interpret κ as an ambiguity
aversion parameter.

Finally, define the recursive multiple-priors utility process (Vt(c)) for each
c ∈ C as:

Vt(c) = min
Q∈P

EQ

[∫ T

t

e−β(s−t) u(cs) ds

∣∣∣∣∣Gt
]
, 0 ≤ t ≤ T. (4)

Abbreviate V0(·) by V (·) and refer to it as recursive multiple-priors util-
ity. The recursive multiple-priors utility model under complete informa-
tion studied in Chen and Epstein (2002) corresponds to the case where
{Gt} = {Ft} and Ŵ = W. Finally, the standard expected utility model is
obtained when κ = 0 in which case P = {P}.

With regard to the properties of utility, first the utility process (Vt(c))
is dynamically consistent because the following recursive relation holds:

Vt = min
Q∈P

EQ

[∫ τ

t

e−β(s−t) u(cs) ds+ e−β(τ−t)Vτ

∣∣∣∣Gt] , 0 ≤ t < τ ≤ T.

This property follows from the fact that the utility process (Vt(c)) is the
unique solution to the following backward stochastic differential equation
(BSDE),7

dVt = [−u(ct) + βVt + max
θ∈Θ

θt · σVt ] dt+ σVt · dŴt, VT = 0. (5)

7Sufficient conditions are that u be Borel measurable and that it satisfy a growth

condition ensuring E
hR T

0 u2(ct) dt
i

< ∞ for all c in C. See El Karoui et al. (1997) for

an excellent survey of the theory and applications of the backward stochastic differential
equations.
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Note that the volatility (σVt ) at c, denoted more fully by (σVt (c)), is de-
termined as part of the solution to the BSDE; it plays a key role in the
sequel.8

Because9

max
θ∈Θ

θt · σVt = θ∗t · σVt , for θ∗t = κ⊗ sgn(σVt (c)), (6)

BSDE (5) can be written as

dVt = [−u(ct) + βVt + θ∗t · σVt ] dt+ σVt · dŴt, VT = 0. (7)

Note that the measure delivered by the density generator θ∗ achieves the
minimum in (4).

Finally, assume that u′ > 0, u′′ < 0. Then by Chen and Epstein (2002),
each Vt(·) is continuous, increasing and strictly concave. Also assume that
the following Inada condition holds: limx→0+ u′(x) = ∞ and limx→∞ u′(x) =
0.

3. OPTIMAL CONSUMPTION AND PORTFOLIO CHOICE

This section applies recursive multiple-priors utility to study the optimal
consumption and portfolio choice problem with incomplete information.

3.1. The Environment
Financial markets. Uncertainty is represented by a complete filtered prob-
ability space (Ω,FT , {Ft}Tt=0, P ) on which is defined a d-dimensional stan-
dard Brownian motion W = (W 1, ...,W d)ᵀ. There are d + 1 securities
consisting of one riskless bond and d non-dividend-paying stocks. The
price of the riskless bond is given by

S0
t = ert, t ∈ [0, T ],

where the riskless rate r is a positive constant. Denote by Sit the price of
the ith stock and by Rit = dSit/S

i
t its return, i = 1, ..., d. Assume that the

initial price Si0 is a given positive constant and that the vector of returns
Rt = (R1

t , ..., R
d
t )

ᵀ satisfies

dRt = µR dt+ σR dWt, (8)

8Both (Vt) and (σV
t ) are progressively measurable with respect to {Gt} and sequare

integrable.
9For any d-dimensional vector x, sgn(x) is the d-dimensional vector with ith compo-

nent equal to sgn(xi) = | xi | / xi if xi 6= 0 and = 0 if xi = 0. For any y ∈ Rd,
y⊗sgn(x) denotes the vector in Rd with ith component yisgn(xi) .
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where the volatility σR is a d× d matrix of real-valued constants. On the
other hand, the vector of mean returns µR = (µR1 , ..., µ

R
d )ᵀ : Ω → Rd is an

F0-measurable random variable with distribution ν(A) = P (µR ∈ A) for
any Borel set A in Rd that satisfies:∫

Rd

|b| ν(db) <∞.

Thus µR is independent of W . In the standard Bayesian analysis, ν is the
prior distribution of µR.

Assume that the volatility matrix σR satisfies the following assumption
which ensures that financial markets are complete (e.g., Duffie (1996)).

Assumption 2. σR is invertible.

Define the market price of uncertainty process (ηt) by10

ηt = (σR)−1(µR − r1), 0 ≤ t ≤ T , (9)

where 1 is the vector in Rd with each component equal to 1. Then the
following Lemma holds (see Lakner (1995)).

Lemma 1. The process Z defined by

Zt = exp
{
−
∫ t

0

ηs · dWs −
1
2

∫ t

0

|ηs|2 ds
}

is a (P, {Ft})-martingale.

Information structure. Assume that the bond price S0
t and stock prices St

are given exogenously. Denote by {FSt } the augmented filtration generated
by the price processes. Complete information is represented by {Ft}, the
augmented filtration generated by µR and W . However, the agent does
not observe the Brownian motion W and the mean returns µR. Rather,
his information is represented by the filtration {FSt } where each FSt ⊂ Ft.
Thus we are in the set-up of section 2.1 with {Gt} = {FSt }.

Budget constraint. There is a single consumption good taken as the nu-
meraire. Consumption processes lie in the consumption space C defined
in section 2.2. Denote the wealth process by (Xt). A portfolio (share) ψ
is an Rd-valued {FSt }-adapted progressively measurable process such that

10Following Chen and Epstein (2002) and Epstein and Miao (2003), the deviation
from the usual terminology of market price of risk is to emphasize that uncertainty
includes both risk and ambiguity in the model.
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∫ T
0
|ψs|2ds <∞. The component ψi(t) represents the proportion of wealth

invested in the i th stocks at time t. Thus 1 − ψt · 1 is the proportion
invested in the bond. Denote the set of all portfolios by Ψ. Endowed with
initial wealth X0 > 0, the agent makes consumption and investment deci-
sions based on information represented by {FSt }. His budget constraint is
given by

dXt =
{[
r + (ψt)ᵀ(µR − r1)

]
Xt − ct

}
dt+Xt(ψt)ᵀ σR dWt. (10)

Preferences. The above environment is standard. The departure from
the standard model is that preferences are represented by the recursive
multiple-priors utility function V corresponding to the set of priors defined
in (3).

In order to ensure that V is well defined, introduce the process (Ŵt):

Ŵt =
∫ t

0

(σR)−1[dRτ − µ̂Rτ dτ ], (11)

where µ̂R(t) ≡ E
[
µR | FSt

]
is a measurable version of the conditional ex-

pectation of µR with respect to the price filtration {FSt }.
The following lemma implies that Ŵ defined in (11) satisfies Assumption

1. Thus recursive multiple-priors utility V is well defined. The proof of
this lemma is standard (see, e.g., Liptser and Shiryayev (1977)).

Lemma 2. Ŵ is a (P, {FSt })-Brownian motion. Moreover, the aug-
mented filtration generated by the Brownian motion Ŵ coincides with {FSt }.

3.2. The Decision Problem and Separation Principle
Decision problem. The agent makes consumption and investment plans for
the entire horizon at time zero by solving:

sup
(c,ψ)∈C×Ψ

V (c) (12)

subject to (10) and

Xt ≥ 0, t ∈ [0, T ], X0 > 0 given. (13)

The credit constraint (13) rules out doubling strategies (e.g., Dybvig and
Huang (1988)). Note that the consumption and portfolio processes are
required to be adapted to the price filtration {FSt }. Finally, because the
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utility process is dynamically consistent, the optimal plan will be carried
out as time proceeds.

Separation principle. I solve this problem by the separation principle. In
order to understand how this principle works for recursive multiple-priors
utility, consider first the standard setting where κ = 0 and V is an expected
utility function. In this case, the agent’s unique prior is represented by P .

By (8) and (9), (Ŵt) defined in (11) satisfies

Ŵt = Wt +
∫ t

0

(ηs − η̂s)ds, (14)

where η̂t ≡ E
[
ηt | FSt

]
is a measurable version of the conditional expec-

tation of ηt with respect to {FSt }. Denote µ̂R(t) = (µ̂R1 (t), ..., µ̂Rd (t))ᵀ.
Then

η̂t = (σR)−1(µ̂Rt − r1). (15)

By (8), (11) and (15), under prior P the agent’s perceived returns dy-
namics is

dRt = µ̂Rt dt+ σRdŴt (16)

and the budget constraint (10) becomes

dXt = (rXt − ct)dt+Xt(ψt)ᵀσR[dŴt + η̂tdt]. (17)

Because Ŵ and η̂ are adapted to {FSt }, all processes in (17) are adapted
to {FSt }. Thus the agent’s problem has been transformed into one with
complete information and filtration {FSt } where the Bayesian estimate η̂t
(µ̂Rt ) is treated as the ‘true’ market price of uncertainty (mean returns).
After using standard filtering theory (see Liptser and Shiryayev (1977)) to
determine the conditional distribution of η (or µR), the usual optimization
tools under complete information can be applied.

What happens when the agent has a set of priors? Note that the above
transformation (16) is performed using the single prior P . When the agent
has a set of priors P, this transformation can take many forms depending
on which prior in the set P is used. Formally, consider any Q ∈ P and
denote by θ the corresponding density generator. By Girsanov’s Theorem,
the process ŴQ defined by

dŴQ
t = dŴt + θtdt

is a Q-Brownian motion and the natural filtration generated by ŴQ coin-
cides with {FSt }. Then the budget constraint can be written as

dXt = (rXt − ct)dt+Xt(ψt)ᵀσR
[
dŴQ

t + (η̂t − θt)dt
]
. (18)
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Because (η̂−θ) and ŴQ are {FSt }-adapted, when the agent treats (η̂t−θt)
as the observable estimate of the market price of uncertainty using measure
Q, the problem is transformed into the complete information world. Con-
sequently, the usual optimization tools under complete information can be
applied.

In sum, because all measures in the set of priors are equivalent all corre-
sponding transformed budget constraints are equivalent to the original one
(10). Hence using any measure in the set of priors to perform estimation
leads to the same optimum.

3.3. Two-step Procedure
Consistent with the separation principle, I first use the reference measure

P to perform estimation and transform the budget constraint (10) into
(17) as in the preceding subsection. Then the problem is reformulated as a
static Arrow-Debreu problem. Finally, from this problem, I derive optimal
consumption and portfolio choice (e.g., Duffie and Skiadas (1994)).

Filtering. By Lemma 1 and Girsanov’s Theorem, one can define a proba-
bility measure P̃ equivalent to P on (Ω,FT ) via dP̃ /dP = ZT such that
the d-dimensional process W̃ defined by

W̃t = Wt +
∫ t

0

ηs ds (19)

is a (P̃ , {Ft})-Brownian motion. Then, by (8) and (9),

dRt = rdt+ σRt dW̃t.

Thus, P̃ is an equivalent martingale measure because the vector of ‘dis-
counted’ prices, (e−rtSt), is a P̃ -martingale.

The following facts are important for the characterization of optima. By
Lakner (1998), the (P, {FSt })-martingale (Ẑt) defined by

Ẑt ≡ E
[
Zt | FSt

]
, 0 ≤ t ≤ T,

is an indistinguishable version of the process

exp
{
−
∫ t

0

η̂s · dŴs −
1
2

∫ t

0

|η̂s|2ds
}
, 0 ≤ t ≤ T. (20)

Therefore, by (14) and Girsanov’s Theorem, the process W̃ defined by (19)
satisfies

W̃t = Wt +
∫ t

0

ηsds = Ŵt +
∫ t

0

η̂sds (21)
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and it is a (P̃ , {FSt })-Brownian motion. Moreover, the augmented natural
filtration of W̃ coincides with the price filtration {FSt } (see Lakner (1995)
Proposition 4.1). Note that P̃ is also a probability measure on (Ω,FST )
defined by dP̃ /dP = ẐT .

Static Arrow-Debreu problem. The existence of an equivalent martingale
measure P̃ and the credit constraint (13) rule out arbitrage opportunities
(see Duffie (1996)). Because there is no arbitrage and markets are complete,
a unique state price density process (pt) relative to measure P is delivered
by

pt = e−rtẐt.

The following theorem is standard (see Karatzas and Xue (1991) or
Lakner (1995)).

Theorem 1. (i) For any consumption process c ∈ C, there exist a port-
folio process ψ and a wealth process X such that (c, ψ,X) satisfies the
dynamic budget constraint (17) and the credit constraint (13) if and only
if

E

[∫ T

0

ptctdt

]
≤ X0. (22)

(ii) If the above inequality holds with equality, the portfolio process ψ is
unique up to equivalence and given by

ψt = ert((σR)ᵀ)−1φt/Xt, (23)

where

e−rtXt = E eP
[∫ T

0

e−rtct dt

∣∣∣∣∣FSt
]

= X0 +
∫ t

0

φs · dW̃s.

The corresponding wealth process is given by

Xt =
1
pt
E

[∫ T

t

pscsds

∣∣∣∣∣FSt
]
. (24)

Thus the consumption process c∗ can be found by solving the static
Arrow-Debreu problem:

sup
c∈C

V (c) subject to E

[∫ T

0

ptctdt

]
≤ X0. (25)
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The optimal portfolio process ψ∗ is then delivered by (23).

Utility supergradient. In order to solve problem (25), it is useful to find the
supergradients for V . A supergradient for V at the consumption process
c ∈ C is a process (πt) satisfying

V (c′) − V (c) ≤ E

[∫ T

0

πt (c′t − ct) dt

]
,

for all c′ in C. By Chen and Epstein (2002), for each θ∗ satisfying (6), the
process

πt(c) = e−βt u′(ct) zθ
∗

t , 0 ≤ t ≤ T, (26)

is a supergradient for V at c.

Optimal plan. Denote by J the value function of problem (25). Assume
that J(X0) < ∞. Then it is easy to show that the value function for
problem (12) is also finite and equal to J(X0).

The following theorem characterizes an optimum for problem (12).

Theorem 2. (i) The optimal consumption process c∗ is given by

e−βtzθ
∗

t u
′(c∗t ) = λpt, (27)

where λ > 0 is such that

E

[∫ T

0

ptc
∗
t dt

]
= X0, (28)

and (θ∗t ) satisfies

θ∗t = κ⊗ sgn(σVt (c∗)). (29)

Here (Vt(c∗), σVt (c∗)) is the unique solution to BSDE (7) for c = c∗.
(ii) The optimal wealth process X∗ is given by (24) where c = c∗.
(iii) The optimal portfolio ψ∗ is given by

ψ∗t = ert((σR)ᵀ)−1φtX
∗
t ,

where (φt) satisfies

e−rtX∗
t +
∫ t

0

e−rtc∗t ds = E eP
[∫ T

0

e−rtc∗t dt

∣∣∣∣∣FSt
]

= X0+
∫ t

0

φs ·dW̃s. (30)
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As is well known, the optimal portfolio is related to the integrand of
the martingale representation in (30). Section 4 will give two examples to
clarify the nature of the optimal portfolio.

If an optimum exists it must be unique. This is because strict concavity
of V (·) implies the optimal consumption process is unique. Then by (27)
the optimal density generator is also unique.

In sum, the following two-step procedure can be used to solve optimal
consumption and portfolio choice described above.

• Step 1. (Ordinary filtering) First, use the standard filtering technique
(e.g., Karatzas and Zhao (1998)) to solve for the conditional distribution
of µR and the conditional expectation µ̂Rt = E[µR|FSt ] for each t. Next use
(15) and (20) to solve for Ẑ. Finally, let pt = e−rtẐt.

• Step 2. (Ordinary martingale method) Given any θ ∈ Θ, solve the
following system of two equations:

e−βtzθt u
′(ct) = λpt,

E

[∫ T

0

ptctdt

]
= X0,

for c and λ to yield c = g(θ) where g maps Θ into C. Second, solve BSDE
(7) for the volatility of (Vt(c)) when c = g(θ) to obtain σ(g(θ)). The optimal
density generator θ∗ is given by the following fixed point problem:

θt = κ⊗ sgn
(
σVt (g(θ))

)
, 0 ≤ t ≤ T. (31)

Finally, if there exists a solution θ∗ to (31), the optimal consumption pro-
cess c∗ and portfolio ψ∗ are given by Theorem 2.

3.4. Hedging Motives
In order to understand the effects of ambiguity on optimal choice, it

is useful to consider first a limited observational equivalence pointed out
in Chen and Epstein (2002) and Epstein and Miao (2003). Notice that
equation (27) is identical to that for an expected utility maximizer who
uses the single prior Q∗ corresponding to the density generator θ∗ :

dQ∗/dP = exp

{
−1

2

∫ T

0

|θ∗s |
2
ds −

∫ T

0

θ∗s · dŴs

}
. (32)

Thus the optimum characterized in Theorem 2 can be generated in a stan-
dard model without ambiguity where the agent uses a distorted belief Q∗.
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Because Q∗ is endogenously delivered by ambiguity, following Epstein and
Miao (2003), it is natural to refer to Q∗ as ambiguity adjusted probability
beliefs.

By (16) and Girsanov’s Theorem, under Q∗ the agent’s perceived returns
dynamics is

dRt = (µ̂Rt − σR θ∗t ) dt+ σR dŴ ∗
t , (33)

where the (Q∗, {FSt })-Brownian motion (Ŵ ∗
t ) is defined by

dŴ ∗
t = dŴt + θ∗t dt. (34)

From (33), there are two factors influencing the deviations of the agent’s
perceived mean returns from their true values:

µR − (µ̂Rt − σR θ∗t ) = (µR − E[µR | FSt ]) + σRθ∗t .

The first term represents estimation risk and the second term reflects am-
biguity. Because these terms are time-varying, investment opportunities
change over time and two separate hedging motives arise.

4. EXAMPLES

Consider the power felicity function:

u(x) = xγ/γ, x ∈ R+, 0 6= γ < 1,

where 1− γ is the coefficient of relative risk aversion.
The following theorem characterizes an optimum.

Theorem 3. (i) The optimal consumption process is given by

c∗t =
(
e−βtzθ

∗

t

λpt

) 1
1−γ

, (35)

where

θ∗t = κ⊗
(
σHt /γ +

1
1− γ

(η̂t − θ∗t )
)
, (36)

λ =

(
E

[∫ T

0

(pt)
−γ
1−γ (e−βtzθ

∗

t )
1

1−γ dt

]
/X0

)1−γ

,

and (Ht, σ
H
t ) is given below. The dynamics of c∗ is given by

dc∗t /c
∗
t = µctdt+ σct · dŴt,
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where (µct) and (σct ) satisfy

σct =
1

1− γ
(η̂t − θ∗t ) and (37)

µct =
1

1− γ
(r − β) +

1
2
(2− γ)σct · σct + σct · θ∗t . (38)

(ii) The utility process at c∗ is given by

Vt =
(c∗t )

γ

γ
Ht, (39)

where (Ht, σ
H
t ) is the unique solution to the BSDE:

dHt/Ht = µHt dt+ σHt · dŴt, HT = 0, (40)

where

µHt =
γ

1− γ

[
β/γ − r − (η̂t − θ∗t ) · (η̂t − θ∗t )

2(1− γ)

]
−H−1

t +(θ∗t−ασct )·σHt . (41)

(iii) The optimal wealth process is given by

X∗
t =

1
pt
E

[∫ T

t

psc
∗
sds

∣∣∣∣∣FSt
]

= c∗tHt. (42)

(iv) The optimal portfolio is given by

ψ∗t =
1

1− γ
(σR(σR)ᵀ)−1(µ̂Rt − r1)− 1

1− γ
((σR)ᵀ)−1θ∗t + ((σR)ᵀ)−1σHt .

(43)

I focus discussions on the optimal portfolio as the behavior of optimal
consumption can be deduced from (35), (37) and (38).

First, it is useful to rewrite (linear) BSDE (40) in integral form:

Ht = EQ

[∫ T

t

exp
{

γ

1− γ

∫ s

t

[r − β/γ + (1− γ)σcτ · σcτ/2] dτ
}
ds

∣∣∣∣FSt
]
,

(44)
where dQ/P = zθT and (zθt ) is determined by the density generator θt =
θ∗t −ασct . Thus, Ht > 0. From (44) and Ito’s Lemma, Htσ

H
t is the integrand
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of the martingale representation of the martingale:

EQ

[∫ T

0

exp
{

γ

1− γ

∫ s

0

[r − β/γ + (1− γ)σcτ · σcτ/2] dτ
}
ds

∣∣∣∣FSt
]
, 0 ≤ t ≤ T.

Thus, substituting (37) into the above reveals that both ambiguity (rep-
resented by θ∗t ) and estimation risk (represented by µ̂Rt ) affect σHt which
determines hedging demands represented by the third term in (43).

As shown in section 3.4, ambiguity distorts mean returns at time t by an
amount of σRθ∗t under the ambiguity adjusted belief Q∗. The second term
in (43) represents this static effect due to ambiguity.

As γ → 0, the first-order conditions converge to those for the logarithmic
case. Accordingly, the optimal consumption and portfolio processes con-
verge to the plans that are optimal in the logarithmic case. In particular,
when γ = 0,

Ht = β−1
[
1− e−β(T−t)

]
and σHt = 0.

This reflects the well known fact that with logarithmic felicity the agent be-
haves myopically so that there is no hedging demand against future changes
of investment opportunities. As a result, the optimal portfolio rule is iden-
tical to that in a model with complete information and mean returns (µ̂Rt ).

Next, the above theorem subsumes solutions for the standard model
with expected utility, obtained by setting κ = 0 (e.g., Brennan (1998)).11

In the absence of ambiguity, estimation risk is the only source of hedging
demand.12 Brennan (1998) interprets this demand as being induced by the
agent’s learning about the true mean returns.

Theorem 3 can also deliver solutions for the case of complete information
where the agent observes {Ft} so that {FSt } = {Ft}. For example, under
expected utility, it is easy to show that σHt = 0. Thus the optimal portfolio
is given by the mean-variance efficient demand:

ψ∗t =
1

1− γ
(σR(σR)ᵀ)−1(µR − r1).

Under ambiguity, the optimal portfolio is characterized by the following
corollary:

Corollary 1. In the case of complete information, if 0 ≤ κ < ηt, then
θ∗t = κ and the optimal portfolio is given by

ψ∗t =
1

1− γ
(σR(σR)ᵀ)−1(µRt − r1)− 1

1− γ
((σR)ᵀ)−1κ.

11Brennan (1998) assumes that the distribution of µR is normal and that the agent
maximizes expected utility from terminal weath.

12Explicit expression for the hedging demand can be derived from Corollary 2.
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Thus under complete information, ambiguity as modeled using κ-ignorance,
does not induce any hedging demand even when mean returns are random.

In contrast, under incomplete information hedging demands arise as re-
vealed by the third component of optimal portfolio given in (43). Hedging
demands naturally arise in standard models with incomplete information
due to estimation risk. In my model ambiguity affects these hedging de-
mands even when (θ∗t ) is constant as will be shown later. Therefore, ambi-
guity has an intertemporal hedging effect.

Finally, in general it is difficult to solve for (θ∗t ) and (ψ∗t ) explicitly
because (θ∗t ) is endogenously determined by a fixed-point problem (36) and
(σHt ) can not be characterized explicitly. However, the following corollary
provides a condition to ensure that θ∗t = κ and characterizes the optimal
portfolio (ψ∗t ) explicitly in terms of Malliavin derivatives and stochastic
integrals.13

Corollary 2. If the following condition hold:

(η̂t − κ) +
ert

X∗
t

((σR)ᵀ)−1E eP
[∫ T

t

e−rsc∗s

(∫ s

t

Dtη̂τdW̃τ

)
ds

∣∣∣∣∣FSt
]
> 0,

(45)
where for θ∗t = κ, (c∗t ) is given by (35), (X∗

t ) is given by (42) and Q∗ is
determined by (32), then θ∗t = κ is optimal and the optimal portfolio is
given by

ψ∗t =
1

1− γ
(σR(σR)ᵀ)−1(µ̂St − r1)− 1

1− γ
((σR)ᵀ)−1κ (46)

+
γ

1− γ

ert

X∗
t

((σR)ᵀ)−1E eP
[∫ T

t

e−rsc∗s

(∫ s

t

Dtη̂τdW̃τ

)
ds

∣∣∣∣∣FSt
]
.

Even though θ∗t = κ is constant, the optimal wealth and consumption
processes (X∗

t ) and (c∗t ) depend on κ. Thus the third term in (46) is affected
by κ so that ambiguity still affects the hedging demand.

13The Malliavin derivative operator D is defined on D1,1, the space of smooth func-

tionals of {cWt; 0 ≤ t ≤ T}. For the exact definition of D1,1 and an introduction to
Malliavin calculus, the reader is referred to Ocone and Karatzas (1991) and Nualart
(1995).



AMBIGUITY, RISK AND PORTFOLIO CHOICE 275

APPENDIX

Proof of Theorem 2:
By (26), the utility supergradient at c∗ is given by

πt = e−βtzθ
∗

t u
′(c∗t ),

where θ∗t = κ⊗sgn(σVt (c∗)) and (Vt(c∗), σVt (c∗)) is the unique solution to
BSDE (7) for c = c∗. From (27), the first-order condition for the problem
(25) is satisfied since λ is the Lagrange multiplier associated with the con-
straint (22). Since V is concave, this condition is also sufficient for c∗ to
be an optimum for problem (25) and hence to problem (12) subject to (17)
and (13).

The remaining step is to find the optimal portfolio ψ∗. This follows im-
mediately from Theorem 1.

Proof of Theorem 3:
Equations (35), (37) and (38) follow from the first-order condition

e−βtzθ
∗

t (c∗t )
γ−1 = λpt, (A.1)

and Ito’s Lemma. The Lagrange multiplier λ is determined by (28). Defer
the proof of (36) for the moment.

For part (ii), it suffices to show that for Vt in (39) the process Vt +∫ t
0
((c∗s)

γ/γ − βVs − θ∗t · σVt )ds, 0 ≤ t ≤ T, is a (P,FSt )-martingale so that
(Vt) solves BSDE (7).

Apply Ito’s Lemma to (39) to derive

dVt + ((c∗t )
γ/γ − βVt − θ∗t · σVt )dt

Vt
= Btdt+

(
σHt + ασct

)
· dŴt, (A.2)

where

Bt = µHt + γ(µct − σct · θ∗t )−
1
2
γ(1− γ)σct · σct − β +H−1

t − (θ∗t − ασct ) · σHt .

By (37), (38) and (41), one obtains that Bt = 0 as desired.
By (A.2), the volatility of utility process is given by

σVt (c∗) = Vt(σHt + ασct ).

Then, equation (36) follows from (29).
Turn to the proof of part (iii). By Ito’s Lemma and eliminating the

resulting martingale term after taking expectations,

Vte
−βtzθ

∗

t − E
[
VT e

−βT zθ
∗

T |FSt
]

= E

[∫ T

t

e−βszθ
∗

s (c∗s)
γ/αds | FSt

]
.
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Use VT = 0, (A.1) and (24) to derive

X∗
t = αVte

−βtzθ
∗

t (λpt)−1 = γ(c∗t )
1−γVt.

Equation (42) follows from the above identity and (39).
Finally, apply Ito’s Lemma to (42) and match the resulting volatility

with that in (10) to obtain

ψt = (σR)−1(σct + σHt ).

Inserting (37) yields the optimal portfolio (43).

Proof of Corollary 1:1

Guess θ∗t = κ. Then using the same computation as above one can show
that

σct =
1

1− γ
(ηt − κ) and

Ht = EQ

»Z T

t

exp


γ

1 − γ

»
r − β/γ +

1

1 − γ
(ηt − κ) · (ηt − κ)/2

–
(s − t)

ff
ds

˛̨̨̨
Ft

–
,

where dQ/P = zθT and (zθt ) is determined by the density generator θt =
κ−ασct . Thus Ht > 0. Because ηt = (σR)−1(µR − r1) and µR is a random
variable independent of the Brownian motion W , one can show that σHt =
0.

Apply Ito’s Lemma to (39) to derive

σVt (c∗) = (c∗t )
γHtσ

c
t .

Because (c∗t )
γHt > 0,

sgn(σVt (c∗)) = sgn(σct ).

Thus if

0 ≤ κi < ηit for all i,

then σct > 0. By (39), σVt (c∗) > 0. Thus θ∗t = κ satisfies (36) and the
expression in the corollary gives the optimal portfolio.

Proof of Corollary 2:
First I guess θ∗t = κ. The key step is to compute σHt . Then one verifies

that the guess is consistent with (36) so that θ∗t = κ is indeed optimal.

1It can also be proved from Corollary 2.
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Let

F ≡
∫ T

0

e−rsc∗sds.

Then by (30) and Ocone and Karatzas (1991) Theorem 2.5,

φt = E eP [DtF | FSt
]
− E eP

[
F

∫ T

t

Dtη̂τdW̃τ | FSt

]
. (A.3)

Apply the following steps to compute this expression.

Step 1. Compute the first term in (A.3).
Use (35) and the definitions of F and p to derive

DF =

Z T

0

e−rsD

 
e−βszθ∗

s

λps

! 1
1−γ

ds =

Z T

0

e−rs

„
e−βs

λe−rs

« 1
1−γ

D
“
zθ∗

s / bZs

” 1
1−γ

ds.

(A.4)

By (1), (20), (21) and the chain rule of Malliavin derivative,

D
“
zθ∗

s / bZs

” 1
1−γ

= D exp


1

1 − γ

»
−1

2

Z s

0

|θ∗τ |2dτ −
Z s

0

θ∗τ · dcWτ +
1

2

Z s

0

|bητ |2dτ +

Z s

0

ητ · dcWτ

–ff
=

1

1 − γ

“
zθ∗

s / bZs

” 1
1−γ


−
Z s

0

(Dθ∗τ )θ∗τdτ −
Z s

0

Dθ∗τdcWτ

−θ∗(·)1[0,s](·) +

Z s

0

(Dbητ )bητdτ +

Z s

0

DbητdcWτ + bη(·)1[0,s](·)
ff

=
1

1 − γ

“
zθ∗

s / bZs

” 1
1−γ

bη(·)1[0,s](·) − κ1[0,s](·) +

Z s

0

DbητdfWτ

ff
,

where 1[0,s](·) is an indicator function.
Substituting this expression into (A.4) yields

E eP [DtF |FSt ] = E eP
[∫ T

0

e−rsDt
(
e−βszθ

∗

s /(λps)
) 1

1−γ

ds

∣∣∣∣∣FSt
]

=
1

1 − γ
(bηt−θ∗t )E eP

»Z T

t

e−rsc∗sds

˛̨̨̨
FS

t

–
+

1

1 − γ
E eP
»Z T

t

e−rsc∗s

Z s

t

DtbητdfWτds

˛̨̨̨
FS

t

–
.

Step 2. Compute the second term in (A.3).
By the definitions of F and Malliavin derivative,

E eP
[
F

∫ T

t

Dtη̂τdW̃τ

∣∣∣∣∣FSt
]

= E eP
[∫ T

t

e−rsc∗s

(∫ s

t

Dtη̂τdW̃τ

)
ds

∣∣∣∣∣FSt
]
.
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Step 3. Compute σHt .
By (43),

σHt =
γ

1− γ

ert

X∗
t

E eP
[∫ T

t

e−rsc∗s

(∫ s

t

Dtη̂τdW̃τ

)
ds

∣∣∣∣∣FSt
]
.

Thus if condition (45) holds, then θ∗t = κ satisfies (36) so that it is indeed
optimal.

Step 4. Compute the optimal portfolio.
By Theorem 2,

ψ∗t = ert((σS)ᵀ)−1φt/X
∗
t

=
1

1− γ
(σR(σR)ᵀ)−1(µ̂St − r1)− 1

1− γ
((σR)ᵀ)−1κ

+
γ

1− γ

ert

X∗
t

((σR)ᵀ)−1E eP
[∫ T

t

e−rsc∗s

(∫ s

t

Dtη̂τdW̃τ

)
ds

∣∣∣∣∣FSt
]
.
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