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In this paper a beta-component mixture is proposed to model the market-
implied severity. Recovery rates are extracted and identified from credit default
swaps instead of using defaulted bonds instead using defaulted bonds because
it allows us to identify recovery rates of low probability of default companies.
An empirical analysis is carried out and the results show that a single beta
distribution is rejected as a correct specification for implied severity while a
beta-component mixture is accepted. Furthermore, the importance of this
modeling approach is highlighted by focusing on its role for credit VaR.
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1. INTRODUCTION

At present there is a growing interest in modeling severity, which is de-
fined as one minus the recovery rate. It is essential to approximate the
severity distribution because risk quantities, such as expected credit loss,
loss given default and credit VaR, rely on it. Usually in credit risk prac-
tice, it has been approximated by the analysis of recovery rates on defaulted
bond issues (Altman, Brady and Sinori, 2005 and Acharya, Bharath and
Srinivasan, 2007), eventhough there exists a lack of data on recoveries. The
main weakness of this approach is that it does not allow to estimate the
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severity distribution of low probability of default companies, which have
not enough defaulted bonds to estimate recovery rates accurately. Most of
the industry-sponsored models, such as Portfolio Manager, CreditMetrics
and Moody’s KMV model, treat recovery rates as stochastic variables mod-
eled through a beta distribution. Although there is no theoretical reason
that this is the right shape, it has been widely used in practice to describe
the observed behavior of recovery rates since beta distribution is one of the
few common “named” distributions that give probability 1 to a finite inter-
val. Nevertheless, in the related literature, there is strong evidence that the
recovery rate distribution may exhibit several local modes (Asarnow and
Edwards, 1995, Gourieroux and Monfort, 2006, Hagmann, Renault and
Scaillet, 2005, Renault and Scaillet, 2004, and Schuermann, 2005, among
others). The several modes can arise from different periods (recession and
expansion), different types of collateral securing the instruments or from
various seniority levels in the same data set (senior secured, senior unse-
cured, subordinated and junior subordinated). Using data from Moody’s
Default Risk Service Database, Schuermann (2005) illustrates that recov-
ery rate distributions conditioned to the stage of the business are clearly
multimodal. Renault and Scaillet (2004) shows that nonparametric plots of
the recovery function frequently exhibit more than two local modes using
data from Standard & Poor’s/PMD classified by seniority and by industry.
The presence of multimodality can be suggestive of more than one under-
lying unimodal distribution, each referring to a certain group of recovery
rates. These groups can be estimated by means of beta-component mix-
tures. They have simple tractability for modeling and flexibility enough to
describe unknown and multimodal distributional shapes which apparently
can not be modeled by a beta distribution.

The rapid growth of credit derivative market enables to make use of
credit default swaps (CDS) as market indicators. As Düllmann and Sosin-
ska (2007) pointed out credit default swaps are less limitated as market
indicators than credit spreads of subordinated debt issues, since CDS rep-
resent insurance premia for default events and measure credit risk more
directly. Most of studies on analyzing the usefulness of CDS as market
indicators infer probability of default from CDS, imposing an exogenously
constant recovery rate. The market convenction is to assume that the
average recovery rate is around 50%. Under such assumption, the term
structure of CDS spreads can be used to extract the term structure of
risk-neutral default probabilities either using a structural model (Finger,
Lardy, Pan, Ta and Tierney, 2002 and Düllmann and Sosinska, 2007) or a
reduced-form framework (Jarrow, 2001, Duffie and Singleton, 1999, Jarrow,
Lando and Turnbull, 1997 and Madan, Guntay and Unal, 2003). However
it is unrealistic to consider that recovery rates held fixed given that the
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pattern of recovery rate distribution can vary significantly across seniority
level, industries, stages of business cycle, etc.

At present recovery rate extraction from CDS is relatively scarce. The
approaches which focus on extracting simultaneously both the probability
of default and recovery rates may be classified into time-series dependent
approaches, cross-sectional approaches and panel data approaches (Chris-
tensen, 2005, Pan and Singleton, 2008, Chava, Stefanescu and Turnbull,
2006 and Acharya, Bharath and Srinivasan, 2007). Das and Hanouna
(2009) adopt a calibration approach for bootstrapping implied recovery
rates from CDS spread curves at any single point in time. Their procedure
uses information from the equity market, the credit default swap market
and it also uses the forward curve of riskless rates, thereby incorporat-
ing information from the interest rate market as well. In contrast to the
above approaches only information on a given trading day is used, an en-
tire forward term structure of recovery is delivered and a dynamic model
of recovery is offered through a functional relation between recovery and
state variables. Das and Hanouna (2009) model is flexible and robust. It
is flexible in the sense that it can be used with different state variables, al-
ternate recovery functional forms and calibrated to multiple debt tranches
of the same issuer. It is robust because it evidences parameter stability
over time, is stable to changes in inputs and provides similar recovery term
structures for different functional specifications. Finally, their model is
easy to calibrate.

In this paper we approximate the severity distribution of a given com-
pany at any single point in time using recovery rates implicit in the term
structure of CDS. In doing this, we implement the approach introduced
by Das and Hanouna (2009). Our main objective is to model the market-
implied severity as a mixture of beta components in order to capture the
observed multimodality. Futhermore, we highlight the importance of this
modeling approach by focusing on its role for credit VaR, which is a com-
monly used risk quantity. Specifically, simulation experiments are carried
out to evaluate the implications of computing credit VaR in the case where
a beta distribuion is wrongly assumed when the true underlying severity
distribution is a beta-component mixture.

The paper is organized as follows. Section 2 describes briefly the method-
ology developed by Das and Hanouna (2009) to extract and identify the
implied forward curve of recovery rates. Section 3 describes our proposal
of modeling market-implied severity by finite mixtures of beta compo-
nents. This section reports the representation, interpretation and estima-
tion of mixture distributions using the Expectation-Maximization (EM)
algorithm. Section 4 reports empirical results based on four companies
which belong to the European stock index EUROSTOXX 50. In Section 5
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an application to credit VaR estimation for two sets of portfolios is carried
out. Finally, conclusions are drawn in Section 6.

2. IDENTIFICATION OF IMPLIED RECOVERY RATES
FROM CDS

The most important instrument in the credit derivative market is the
credit default swap (CDS), which essentially provides insurance against the
default of an issuer (the reference credit) or on a specific underlying bond
(the reference security). In its most basic form the buyer of the protection
pays an annual or semiannual premium until either the maturity of the
contract or default on the reference entity, whichever comes first. If a
default occurs, the seller of the protection compensates the buyer for the
loss on the reference security by either paying the face value of the bond
in exchange for the defaulted bond (physical settlement) or by paying an
amount of cash which compensates the buyer of the protection for the
difference between the post-default market value of the bond and the par
value (cash settlement). Typically, the underlying credit of a default swap
is a rated firm with publicly traded debt or a sovereign entity. More details
on CDS may be found in Lando (2004).

The steps of Das and Hanouna (2009) methodology to identify implied,
endogenous, dynamic functions of the recovery rate and default probability
from CDS can be sum up as follows:

Step 1: The standard relationship of CDS spreads to default intensities
and recovery rates is presented, considering that the fair pricing of a default
swap must be such that the expected present value of payments made by
buyer and seller are equal:

CN =
N∑

j=1

Sj−1Dj =
N∑

j=1

Sj−1(1− e−λj )Dj(1− φj) (1)

where N is the number of periods in the model, indexed by j = 1, . . . , N ;
CN is the fair pricing of a default swap (it is the premium); Sj = e−

Pj
k=1 λk

is the survival function of a firm and λj denotes the default intensity,
λj = λ(j−1, j), constant over forward period j (it is assumed that S(0) = 1,
which represents that a firm is solvent); Dj is the discount function, written
as function of forward rates, Dj = e−

Pj
k=1 fk ; φj = φ(j−1, j) is the recovery

rate in the event of default (it is the recovery rate in the event that default
occurs in period j; then, the loss payment on default is equal to (φj − 1));
Sj(1 − e−λj ) is the probability of surviving until period j − 1 (i.e., the
expected loss payment in period j is based on the probability of default in
period j conditional on no default in a prior period).
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Step 2: Default intensities are represented in terms of spreads and re-
covery rates. Through a process of bootstrapping, the general form of the
intensity probability is (for all j):

λj = (−1) ln

{
Sj−1Dj(1− φj +

∑j−1
k=1 Gk − Cj

∑j
k=1 Hj

Sj−1Dj(1− φj)

}
Gj ≡ Sj−1(1− e−λj )Dj(1− φj) (2)

Hj ≡ Sj−1Dj

Step 3: A functional relationship of recovery rates to default intensities
is choosen, which may generally be written as φ = g[λ, θ], where both
λ, φ ∈ Rn are term structure vectors and θ is a parameter set.

Step 4: An iterative fixed-point algorithm is begun using a starting value
for φ(T ) = 0.5, for all T . In the iteration process, (i) finding λ(T ) from
equation (2) and (ii) finding φ(T ) from λ(T ) using the loglinear regresion
relationship. The system stabilizes rapidly within a few iterations.

The approach which is taken in this paper is to use information from the
equity market through the Merton model (Merton, 1974). The identifica-
tion function between recovery rate and default intensity for the iterative
process is given by the following loglinear relationship:

ln(φ(T )) = θ0 + θ1 ln(λ(T )) (3)

The term structure of interest rates is estimated using the commonly
used Nelson and Siegel model (Nelson and Siege, 1987), which uses a single
exponential functional form over the entire maturity range. This model
suggests a parsimonious parametrization of the instantaneous forward rate
curve given as follows:

f(t) = α1 + α2e
−t/τ + α3

t

τ
e−t/τ (4)

The parameters α1, α2, α3 and τ can be interpreted as: α1 + α2 is the
instantaneous short rate; α1 is the consol rate; that is, limt→∞ f(t) = α1;
−α2 is the slope of the term structure of forward rates; α3 affects the
curvature of the term structure over the intermediate terms; τ > 0 is the
speed of convergence of the term structure toward the consol rate. These
four parameters are estimated by minimizing the sum of squared errors:

min
k∑

i=1

ε2i (5)
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where εi is the difference between the ith bond’s market price and its
theoretical price.

3. BETA-COMPONENT MIXTURES IN MODELING
IMPLIED RECOVERY RATES

We propose to use finite mixtures of beta distributions in proportions
π1, . . . , πg to model implied recovery rates. The mixing proportions rep-
resent the percentage of recovery rates belonging to each component of
the mixture, are non-negative and sum to 1. Such distributions provide
an extremely flexible method of modeling unknown and multimodal dis-
tributional shapes which apparently cannot be modelled by a single beta
distribution. Each component represents a local area of support of the true
distribution which may reflect the behaviour of recovery rates, for instance,
belonging to a particular industry, with a specific seniority level or during
a stage of the business cycle.

The probability density function of the recovery rates is given by

f(y;π, p, q) =
g∑

j=1

πjfj(y|pj , qj), (6)

in which π = (π1, . . . , πg), p = (p1, . . . , pg), q = (q1, . . . , qg) and fj(y; pj , qj),
j = 1, . . . , g, denotes the values of the univariate beta probability function
specified by the parameters pj and qj , given by

fj(y; pj , qj) =
1

B(pj , qj)
ypj−1(1− y)qj−1, 0 < y < 1, pj > 0, qj > 0 (7)

where B(pj , qj) denotes the beta function, pj is the shape parameter and
qj is the scale parameter.

For a given value of g the unknown parameters in the beta mixture model
are estimated by the EM (Expectation-Maximization) algorithm (Demp-
ster, Laird and Rubin, 1977). Under the assumption that y1, . . . , yn are
independent and identically distributed random variables following a beta
mixture distribution, the log-likelihood function is given by

log L(π, p, q|y) =
n∑

i=1

log
g∑

j=1

πjfj(yi|pj , qj) (8)

With the maximum likelihood approach to the estimation of Ψ = (π, p, q),
an estimate is provided by an appropiate root of the likelihood equation

∂ log L(Ψ |y)
∂Ψ

= 0 (9)
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The EM algorithm is used to find solutions of (9) corresponding to local
maxima and it is guaranteed to converge to the MLE. Overall, it is based on
the idea of replacing one difficult likelihood maximization with a sequence
of easier maximizations whose limit is the answer to the original problem.

In the EM framework, the observed univariate data vector Y = (Y1, . . . , Yn)
is completed with a component-label vector Z = (Z1, . . . , Zn). The label
variable Zij = Zi(j), i = 1, . . . , n, j = 1, . . . , g, is 0 or 1 according to
whether i corresponds to the component j. Hence, Z = (Z1, . . . , Zn) is an
unobservable vector of component-indicator variables, and Zi, i = 1, . . . , n,
are assumed to be independent random variables from a multinomial distri-
bution consisting of one draw on g categories with respective probabilities
π1, . . . , πg. That is,

Z1, . . . , Zn ∼ Multg(1, π) (10)

where π = π1, . . . , πg. The complete-data log-likelihood is

log Lc(π, p, q|y) =
g∑

j=1

n∑
i=1

zij log{πjfj(yi; pj , qj)} (11)

The EM algorithm allows us to maximize L(π, p, q|y) by working with
log Lc(π, p, q|y). The EM algorithm is an iterative procedure. Each itera-
tion comprises of the “E-step”, which calculates the expected log likelihood,
and the “M-step”, which finds its maximum.

Now, the algorithm starts: From an initial value Ψ (0) = (π(0), p(0), q(0)),
a sequence is created according to

Ψ (r+1) = the value that maximizes

E[log L(Ψ |y, z)|Ψ (r), y] = Q(Ψ ;Ψ (r)) (12)

which is the conditional expectation of the complete data log-likelihood
log Lc(π, p, q|y, z), given the observed data y, using the current fit Ψ (r) for
Ψ .

On the (r+1) iteration, the E-step requires the calculation of Q(Ψ ;Ψ (r)).
Since Z = (Z1, . . . , Zn is non observed data, the E-step is affected by
replacing zij by its conditional expectation given yj , using Ψ (r) for Ψ . That
is, zij is replaced by τ(yi;Ψ (r)) = EΨ(r)(Zij |yi) = PrΨ(r)(Zij = 1|yi). On
the M-step, on the (r+1) iteration we choose the value of Ψ , say Ψ (r+1),
that maximizes Q(Ψ ;Ψ (r)). Then, the vector Ψ (r+1) is obtained as an
appropiate root of

g∑
j=1

n∑
i=1

τj(yi, Ψ
(r))

∂ log L(Ψj |y)
∂Ψ

= 0 (13)
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The hidden key to the algorithm is the application of the information
inequality (Dempster, Laird and Rubin, 1977, lemma 1), which states that
L(Ψ̂r+1|y) ≥ L(Ψ̂r|y), with equality holding if and only if succesive it-
erations yield the same value of the maximized expected complete-data
log-likelihood, that is, E[log L(Ψ̂r+1|y, z)|Ψ̂r, y] = E[log L(Ψ̂r|y, z)|Ψ̂r, y].

4. MARKET-IMPLIED SEVERITY: A MODEL BASED ON A
BETA-COMPONENT MIXTURE

This study uses data from Bloomberg Financials on CDS spreads for
Spanish industrial quoted companies with liquid traded CDS, which be-
long to the EUROSTOXX 50 index, for the period from January 2004 to
October 2007. They are low credit risk companies and are Repsol, Iber-
drola, Telefonica and Endesa. The data consist on a CDS spread curve
with maturities from 1 to 10 years for each company and each day.

For each of the 935 days in the sample and each company we compute
the term structure of forward recovery rates by applying Das and Hanouna
(2009) methodology. Then, we obtain ten implied recovery rate distribu-
tions for each company, one for each maturity. To examine the shape of the
implied recovery rate distribution we will restrict ourselves to the most fre-
quently traded CDS maturity of 5 years, other maturities are considerably
less liquid.

Figure 1 shows the histograms of the 5-year maturity implied recovery
rates which we have identified from Das and Hanouna (2009) methodology.

The plots exhibits several local modes. Multimodal distributions have
been also reported in Hagmann, Renault and Scaillet (2005) and Schuer-
mann (2005). They appear to be skewed right for Repsol, Iberdrola and
Telefonica, while it is approximately bell-shaped for Endesa. The beta dis-
tribution is unable to capture the pattern of the histograms and the best
practice choice is a beta-component mixture.

In fitting mixture models there is no a priori information regarding the
number of components. Therefore, an issue that requires careful consid-
eration is the choice of the number of component densities (Mclachlan
and Basford, 1987). Different approaches have been designed to assess the
number of components in mixture models (Oliveira-Brochado and Martins,
2005). Alternatively, Whitaker and Lee (2007) proposed a method termed
PURE, constructed by combining the “plug-in” principle and the unbiased
risk estimation technique. The steps of the PURE method are:

i) Estimate the unknown parameters of the postulated mixture and ob-
tain the estimate f̂g of fg.
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FIG. 1. Histograms of implied recovery rates

(a). Histogram of implied recovery rates for Repsol; (b). Histogram of implied

recovery rates for Endesa; (c). Histogram of implied recovery rates for Iberdrola;

(d). Histogram of implied recovery rates for Telefonica.

ii) Compute a pilot estimate f̂p of fg using Akaike’s information criterion.
The bias term is thus computed as (f̂p − f̂g)2.

iii) Using nonparametric bootstrap and B bootstrap samples, calculate
the bootstrap estimate of the variance of f̂g, varbs(f̂g). The resulting risk
estimator is

risk(g) =
n∑

i=1

{varbs(f̂g(xi)) + (f̂p(xi)− f̂g(xi))2} (14)

iv) Choose g as the minimizer of risk(g).

Whitaker and Lee (2007) tested numerically the practical performance
of their proposal and compared it with some information criteria, including
the commonly used Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). In information criteria the estimation of the
order of a mixture model is considered by using a penalized form of the
log-likelihood function. As the likelihood increases with the addition of a
component to a mixture model, the information criteria attempt to bal-
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ance the increase in fit obtained against the larger number of parameters
estimated for models with more components.

In their simulation experiments, the PURE method appeared to be the
best method to correctly identify the number of mixture components. It
performed particularly well, especially when the true number of compo-
nents g was large. They showed also that the PURE method gave good
performance when the mixture components were not clearly separated. It
should be borne in mind that, when information criteria are used, it is im-
portant to ensure that the components are well-separated. Unfortunately,
in recovery risk modeling, the distance between the means of the compo-
nents is usually small. For instance, Hagmann, Renault and Scaillet (2005)
reported the mean of recovery rates by seniority for data extracted from
the Standard & Poor’s/PMD database from 1981-1999. The mean recovery
rates were 56.31%, 46.74%, 35.35% and 35.03% for senior secured, senior
unsecured, subordinated and junior subordinated, respectively. Futher-
more, the AIC and BIC had been shown to be inadequate for deciding the
number of components in the beta mixture model (Ji, Wu, Liu, Wang and
Coombes, 2005), a reliable method of modeling multimodal distributional
shapes in credit risk practice. Then, the PURE method can be extremely
useful in credit risk practice.

Results of testing the number of beta components are reported in Table
1.

TABLE 1.

PURE method results

Companies risk(g = 1) risk(g = 2) risk(g = 3) risk(g = 4)

REPSOL 465.0154 77.3713 70.5020 72.3120

ENDESA 96.1412 98.5352 49.0323 49.4477

IBERDROLA 613.8715 81.4069 56.2009 58.1822

TELEFONICA 629.9442 451.2719 93.1379 93.6812

The selected number of components g is the number which minimizes the risk
estimator risk(g).

Looking at Table 1, one can observe that the risk estimator is minimized
for g = 3 in all cases. Then, the null hypothesis of three-beta components
is accepted in all cases at 1%, 5% and 10% significance levels.

Figure 2 compares the fitting of the beta distribution to the observed
data with respect to the one of the three beta-component mixture.

Figure 2 shows that the beta distribution does not capture the observed
behaviour of the implied recovery rates in any case while the three beta-
component mixture does it absolutely well.
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FIG. 2. Graphical comparison between a beta and a three-beta component mixture

(a). Solid line: a three-beta component mixture. Dashed line: a beta distribution.

In order to provide a formal judgement about whether a beta or a beta-
component mixture distribution is adequate to describe the observed be-
haviour of the implied recovery rates, we provide results of a goodness-of-fit
test based on the Cramer-von Mises (CVM) test statistic. The test statis-
tic is constructed substituting the unknown vector of parameters θ ∈ Rs

appearing in the postulated null distribution F (. : θ), either a beta or a
mixture distribution, by an estimate. Owing to θ is a vector of unknown
parameters, the CVM test statistic is defined as

Ŵ 2
n =

n∑
j=1

{Fn(Yj)− F (Yj , θ̂)}2 (15)

where Fn(.) is the empirical distribution function and θ̂ is the maximum
likelihood estimate of θ.

Bootstrap methodology is applied to implement this type of goodness-of-
fit tests because the tabulated asymptotic critical values have been deduced
for the case in which the postulated null distribution is totally known and
the observations are independent and identically distributed random vari-
ables (Shorack and Wellner, 1986). Nevertheless, those asymptotic critical
values are no longer valid when the CVM test statistic is constructed sub-
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stituting the unknown parameters by their maximum likelihood estimates
because it is no distribution-free. The bootstrap procedure works as fol-
lows:

1. Let Y1, Y2, . . . , Yn be a sequence of recovery rates.
2. Considering that the null distribution is a beta distribution B(.; p, q)

estimate p and q by maximum likelihood. In this way, B(.; p̂, q̂) is obtained.
Draw the empirical distribution of Yj , j = 1, 2, . . . , n, and evaluate Ŵ 2

n

using B(.; p̂, q̂).
3. Repeat B times the following: Generate a sample of random vari-

ables Y ∗
1 , Y ∗

2 , . . . , Y ∗
n from B(.; p̂, q̂). Using p̂, q̂ and Y ∗

j calculate new
maximum likelihood estimates p̂∗, q̂∗. Evaluate the test statistic using
Y ∗

j and B(.; p̂∗, q̂∗). It is denoted Ŵ 2∗
n . In this way, a sample of B indepen-

dent (conditional on the original sample) observations of Ŵ 2
n is obtained,

Ŵ 2∗
n1 , Ŵ 2∗

n2 , . . . , Ŵ 2∗
nB .

4. Let Ŵ 2∗
n(1−α)B the (1 − α)B-th order statistic of the sample

Ŵ 2∗
n1 , Ŵ 2∗

n2 , . . . , Ŵ 2∗
nB , given a significance level α. Reject the null hypothesis

at the significance level α if Ŵ 2
n > Ŵ 2∗

n(1−α)B .

5. Compute the bootstrap p-value as pB = card(Ŵ 2∗
nb ≥ Ŵ 2

n)/B, b =
1, . . . , B.

Also the procedure above is repeated when the null distribution is a mixture
of three-beta components. Results based on B = 500 bootstrap samples
are shown in Table 2.

TABLE 2.

Goodness-of-fit test results

p-value REPSOL ENDESA IBERDROLA TELEFONICA

g = 1 0.000 0.000 0.000 0.000

g = 2 0.020 0.000 0.000 0.000

g = 3 0.953 0.611 0.647 0.999

Bootstrap p-values of testing: (a). H0: “The recovery rate distribution
is a beta (g=1)” versus H1: “The recovery rate distribution is not a
beta”; (b). H0: “The recovery rate distribution is a two-beta component
mixture (g=2)” versus H1: “The recovery rate distribution is not a two-
beta component mixture”; (c). H0: “The recovery rate distribution is
a three-beta component mixture (g=3)” versus H1: “The recovery rate
distribution is not a three-beta component mixture”.

The beta assumption is rejected in all cases while the three-beta mixture
is accepted at 1%, 5% and 10% significance levels.This is not unexpected
given the results reported for the PURE method and the graphical analysis.
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5. BETA-COMPONENT MIXTURE MODEL ROLE IN
CREDIT VAR ESTIMATION

From the viewpoint of credit VaR users it is absolutely relevant to asses
the degree of precision in the reported VaR. The severity distribution is es-
sential to estimate credit VaR and, obviously, the systematic use of the beta
distribution to estimate it can lead to mismeasured credit VaR quantity.

In this section simulation experiments are carried out to show that the
assumption of a beta-component mixture produces much more accurate
measures of credit VaR than the commonly used beta distribution. Some
simulation results are presented to illustrate the effects of computing credit
VaR in the case where a beta distribution is wrongly assumed. In these sim-
ulation experiments, the number of risk exposures of a portfolio is 1000, the
credit loss is computed as one minus the recovery rate of those exposures at
default, the binomial default probability is low and equal to 0.5% because
we are interested in low probability of default companies and the pairwise
default probability is 2.8%. Four scenarios are considered: data are gen-
erated from four different beta-component mixtures, specifically, from the
estimated three-beta component mixtures fitted in the previous section.
Under each scenario the difference between CV aRbeta and the correspond-
ing credit VaR, CV aRmixture, is computed. CV aRbeta is calculated using
the beta distribution to estimate the data distribution.

Table 3 illustrates the different scenarios.

TABLE 3.

Random variable generation from three-beta component mixturesP3
k=1 λkb(.; pk, qk) Scenario 1 Scenario 2 Scenario 3 Scenario 4

p1 2.784 1.931 2.906 0.743

q1 5.879 3.453 13.911 3.721

p2 20.994 9.165 27.652 34.860

q2 17.489 8.126 30.001 40.068

p3 16.505 11.650 6.097 9.943

q3 1.989 2.358 1.450 1.817

λ1 0.445 0.307 0.094 0.042

λ2 0.113 0.546 0.095 0.248

λ3 0.440 0.145 0.809 0.708

Each scenario is given by a three-beta component mixture whose parameter
values are the estimated in Section 4.

The steps of the procedure to compute the diffence between CV aRbeta

and CV aRmixture are the following (Arvanitis, Browne, Gregory and Mar-
tin, 1998):
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1. Generate default indicator functions Xj , j = 1, 2, . . . , 1000, by draw-
ing correlated standard normal random variables Yj :

Yj → N(0, Ω) (16)

where, Ω =

 1 · · · λij

...
. . .

...
λij · · · 1

 and λij is the pairwise default probability,

i, j = 1, 2, . . . , 1000.

The covariance matrix can be factorised as C = AA′, for some A (by
Cholesky factorisation or ortogonal diagonalisation on C). If u is a multi-
variate process with components independently drawn from the standard
normal distribution, then the vector v = Au has the required matrix C.
Having determined the correlation between the normal random variables,
the default indicator function Xj is defined as

Xj = I(vj < z) (17)

where vj is the j-element of the vector v and z = N−1(dj), being dj = 0.5%
the binomial default probability for all j.

2. Compute
∑1000

j=1 Xj . This value gives the number of portfolio assets
which present default.

3. Add the recovery rates corresponding to the assets which present de-
fault in each portfolio (which are those with Xj = 1).

4. Repeat the procedure above 10000 times to compute the correspond-
ing credit loss distribution. Given a confidence level (1− α), compute the
corresponding (1− α)-quantile or credit VaR, denoted by q1−α.

Finally, bootstrap methodology is used to test if the difference T1 = qbeta
1−α−

qmixture
1−α is statistically significant. The steps of the bootstrap procedure

are:

1. Generate a sequence o recovery rates Y1, Y2, . . . , Yn from the estimated
mixture distribution.

2. Under the null distribution, estimate the unknown parameters by
maximum likelihood. In this way, the estimated of the null distribution∑3

k=1 λ̂kb(.; p̂k, q̂k) is obtained.
3. Repeat B = 500 times the following: Generate a sample of random

variables from
∑3

k=1 λ̂kb(.; p̂k, q̂k) to obtain a new sequence of recovery
rates Y ∗

j , j = 1, 2, . . . , n. Compute q∗beta
1−α and qmixture∗

1−α using Y ∗
j following

Arvanitis, Browne, Gregory and Martin (1998). Calculate T1 = qbeta∗
1−α −

qmixture∗
1−α to obtain a sample of B independent (conditional on the original

sample) observations of T1, say T ∗11, . . . , T
∗
1B .
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4. Let T ∗1(1−α)B be the (1−α)B-th order statistic of the sample T ∗11, . . . , T
∗
1B

given a significance level α. Reject the null hypothesis at the significance
level α if T1 > T ∗1(1−α)B .

5. Compute the bootstrap p-value as pB = card(T ∗1b ≥ T1)/B, b =
1, . . . , B.

Table 4 reports the results of this bootstrap test.

TABLE 4.

Credit VaR estimation

SCENARIO 1 SCENARIO 2 SCENARIO 3 SCENARIO 4

q0.95 q0.99 q0.95 q0.99 q0.95 q0.99 q0.95 q0.99

Mixture 0.7100 0.8036 0.7011 0.7986 0.6021 0.7428 0.5913 0.7086

Beta 0.7272 0.8310 0.6902 0.7831 0.5829 0.6979 0.5707 0.6888

qbeta
1−α − qmixture

1−α 0.0171 0.0273 -0.0109 -0.0155 -0.0192 -0.0448 -0.0205 -0.0198

p-value 0.0879 0.0119 0.1078 0.0299 0.0459 0.0019 0.0519 0.0759

q0.95 and q0.99 denote the credit VaR at 95% and 99% confidence level, respectively. The default
probability is 0.5%. For each scenario credit VaR values are reported under a three-beta component
mixture and a beta. The difference between them and the bootstrap p-values are computed.

Table 4 shows that the usual practice of approximating the recovery
rate distribution through a beta distribution can lead to underestimation
of credit VaR (scenarios 2, 3 y 4). It can be observed that credit VaR
differences at 95% loss probability level are statistically significant at 10%
significance level for almost all cases. At higher loss probability level (99%)
credit VaR measures are significant different too: at 5% significant level in
scenarios 1, 2 y 3, and at 10% significant level in scenario 4.

6. CONCLUSIONS

In this paper beta-component mixtures have been proposed to model im-
plied recovery rates in order to capture the observed multimodality. The
empirical analysis reveals that the beta distribution is rejected as a correct
specification for implied recovery rates while a beta-component mixture is
accepted. This analysis is based on implied recovery rates which previ-
ously have been extracted and identified from CDS spreads versus using
defaulted bonds. This allows us to identify recovery rates for companies
which are blue chips. In addition, it has been proved an excellent per-
formance of beta-component mixtures in measuring credit VaR accurately
once the number of beta components is fixed. We found significant differ-
ences in credit VaR estimates at 95% and 99% significance levels and 1%
and 0.5% default probabilities. Accordingly, the beta distribution assump-
tion should therefore be considered with caution for credit VaR estimation.
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To sum up, this paper provides a framework to estimate credit VaR accu-
rately using implied recovery rates extracted from CDS spreads.
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