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Abstract 
Using a large cross-country income distribution dataset spanning close to 800 country-
year observations from industrial and developing countries, this paper shows that the size 
distribution of per capita income is very well approximated empirically by a lognormal 
density. Indeed, the null hypothesis that per capita income follows a lognormal 
distribution cannot be rejected -- although the same hypothesis is unambiguously rejected 
when applied to per capita consumption. The paper shows that lognormality of per capita 
income has important implications for the relative roles of income growth and inequality 
changes in poverty reduction. When poverty reduction is the overriding policy objective, 
poorer and relatively equal countries may be willing to tolerate modest increases in 
income inequality in exchange for faster growth -- more so than richer and highly 
unequal countries. 
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I.  Introduction  
 

In recent years, poverty reduction has been formally enshrined as the goal of 
development policy worldwide, and a rapidly expanding analytical and empirical 
literature has sought to clarify whether poverty changes are driven mainly by growth in 
aggregate income or by growth in the relative incomes of the poor. The question is of 
more than scholarly interest, because it has major implications for the roles of growth-
promoting and inequality-reducing policies in the poverty reduction process. For 
example, if trends in relative incomes were found to account for the lion’s share of 
poverty changes, policy makers might face a tradeoff between fast growth and rapid 
poverty reduction.1  
 

In a recent contribution, Kraay (2005) decomposes poverty changes into three 
ingredients: (i) growth in average incomes; (ii) the sensitivity of poverty to growth; and 
(iii) changes in the distribution of income. In a large cross-country sample, he finds that 
growth in average incomes accounts for some 70 percent of the variation in (headcount) 
poverty changes in the short run, and over 95 percent in the medium to long run. In 
contrast, cross-country differences in the sensitivity of poverty to growth play a minimal 
role. Together, these results suggest that growth-oriented policies hold the key to poverty 
reduction.  

 
In turn, Ravallion (1997, 2004) presents an empirical model relating poverty 

changes to the distribution-corrected rate of growth.2 His estimates underscore the key 
role of initial inequality: depending  on its level, a one-percent increase in income levels 
reduces poverty by as much as 4.3 percent (in very low inequality countries) or as little as 
0.6 percent (in high inequality countries). This suggests that fast poverty reduction will 
be hard to achieve without declines in inequality, especially in very unequal countries.3 

 
This paper reassesses the roles of growth and inequality for poverty reduction 

from a different perspective, based on the use of a parametric approach to model the size 
distribution of income. Thus, the paper follows an abundant literature spanning over a 
century -- from Pareto (1897) to Gibrat (1931), Kalecki (1945), Rutherford (1955), 
Metcalf (1969), Singh and Maddala (1976) and Bourguignon (2003) -- that has attempted 
to approximate the distribution of income using a variety of functional forms. 
Specifically, the paper uses a large cross-country database including both industrial and 
developing countries and spanning almost 40 years to test the null hypothesis that the size 
distribution of per capita income can be described by a lognormal density.  

 
                                                 
1 This, of course, need not always be the case, since many policies are likely to be both growth-promoting 
and equality-enhancing. But some empirical evidence suggests that not all policies have this feature (Barro 
2000, Lundberg and Squire 2003, Lopez 2004), and some may force policy makers to face a trade off 
between faster growth and increasing inequality. 
2 Specifically, Ravallion (1997) interacts the growth rate with one minus the initial Gini coefficient, 
whereas Ravallion (2004) considers a distributional term of the form (1-Gini)θ with θ>1, to incorporate 
possible nonlinear interaction effects between the growth elasticity of poverty and initial inequality.  
3 A similar point is made by Bourguignon (2004), who presents a simulation model calibrated on Mexican 
data. When no change takes place in the distribution of income, the model shows that a per capita growth 
rate of 3 percent per year over a 10-year period lowers the poverty rate by about 7 percentage points. When 
the same growth rate is accompanied by declining inequality (a reduction in the Gini coefficient by 10 
percentage points), poverty falls twice as much -- over 15 percentage points.  
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A parametric approach offers a number of advantages over empirical variance 
decompositions and reduced-form regressions. First, it allows a systematic assessment of 
the role of country-specific initial conditions for the poverty-reducing effects of growth 
and distributional change. While the literature has stressed how initial inequality shapes 
the growth elasticity of poverty, little if any attention has been paid to the roles of the 
initial level of development or the poverty line itself for the choice of poverty-reducing 
policies. For example, should the balance between pro-growth and pro-distributional 
policies be the same in Zambia and El Salvador, which have similar Gini coefficients, 
despite their wide disparity in terms of per capita income (US$361 and US$2,200 
respectively in 2002)? The approach taken in this paper allows a rigorous answer to this 
kind of question. 
 

Second, the parametric approach permits removing the straightjacket of a 
common poverty line across countries, which otherwise is virtually unavoidable in cross-
country empirical work.  Most of the available studies use poverty statistics based on the 
international PPP US$1 a day poverty line. However, such definition is of little interest 
for many middle income developing countries (not to mention industrial economies). As 
an example, in Argentina the headcount poverty was in 2002 close to 60 percent when 
calculated on the basis of the nationally-defined poverty line, while internationally-
comparable poverty indicators based on a dollar-a-day poverty line would place the 
poverty rate around 3 percent.  One implication of these diverging assessments is that the 
findings from empirical work using cross-country poverty databases, based on a common 
poverty line, tend to give more weight to countries where the US$1 a day poverty 
measure makes sense -- i.e., low-income countries where our results below suggest that 
growth should be expected to dominate distributional change from the viewpoint of 
poverty reduction.  
 

Of course, the advantages of the parametric approach matter only if the chosen 
parameterization fits the data well. We find that the null hypothesis of lognormality 
cannot be rejected when applied to the distribution of per capita income, regardless of 
whether income is measured in gross terms (i.e. before taxes and transfers) or net terms 
(after taxes and transfers). However, the same null hypothesis is unambiguously rejected 
when applied to per capita consumption data. We conjecture that this rejection may be 
due to consumption smoothing, under which the log of consumption may not be normally 
distributed even if the log of income is. 
 

The paper derives some implications of this result for the relative roles of growth 
and inequality in poverty reduction under alternative initial conditions.  We highlight four 
main points: (i) inequality hampers poverty reduction, both because of its negative impact 
on the growth elasticity of poverty (as stressed in the literature) but, in most scenarios, 
also because of its negative impact on the inequality elasticity of poverty; (ii) for a given 
poverty line, the impact of growth on poverty is stronger in richer than in poorer 
countries, and hence the latter will find it harder than the former to achieve fast poverty 
reduction; (iii) the share of the variance of poverty changes attributable to growth should 
be generally lower in richer and more unequal countries; and (iv) given the initial levels 
of development and inequality, the relative poverty-reduction effectiveness of growth and 
inequality changes depends on the poverty line -- the higher the poverty line, the bigger 
the role of growth and the smaller the role of distributional change. 
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The rest of the paper is organized as follows. In Section II we describe the test for 
lognormality and the dataset we employ. Section III reports the empirical results. Section 
IV derives the implications of lognormality for the poverty reduction roles of growth and 
inequality changes. Section V offers some concluding remarks.  
 
II. Testing for lognormality of the size distribution of per capita income 
 

Attempts to model the size distribution of per capita income have a long tradition 
in the economics literature, dating back to Pareto (1897). The use of the lognormal 
function in this context was pioneered by Gibrat (1931), who found that if offered a good 
empirical fit to the observed distribution of income, and provided a theoretical 
justification based on a model in which individual incomes are subject to random 
proportionate changes.4  

 
Gibrat’s work was followed by a large literature extending his basic framework 

and offering additional empirical evidence. Kalecki (1945) modified Gibrat’s original 
setup making negative income changes less likely at low income levels than at high ones, 
to account for the fact that the variance of log income remained relatively constant over 
time. Rutherford (1955) expanded Gibrat’s model introducing birth and death 
considerations. He also presented empirical experiments based on the comparison of 
theoretical and observed quantiles of the distribution of income, searching for a 
functional form that would improve upon the lognormal.5   

 
On the theoretical front, other subsequent papers developed rigorous models that 

under fairly general conditions yield lognormal distributions of earnings and/or wealth 
(Sargan 1957, Pestieau and Posen 1979). In turn, on the empirical front, the fit of the 
lognormal function to the observed distribution of income was found to be somewhat less 
satisfactory at the upper end of the distribution (Hill 1959, Cowell 1977), specifically the 
top 3-4 percentiles (Airth 1985).  This prompted attempts to fit more complex functional 
forms -- displaced and/or truncated versions of the lognormal density (Metcalf 1969, 
Salem and Mount 1974) or alternative functional specifications (Fisk 1961, Salem and 
Mount 1974, Singh and Maddala 1976, McDonald 1984). Both strategies pose a tradeoff 
between goodness-of-fit and analytical tractability (Metcalf 1969), as well as 
interpretability of the parameters (Lawrence 1988), which explains the continuing 
popularity of the lognormal specification.6 
 

More recently, Bourguignon (2003) has offered an indirect reassessment of the 
empirical validity of the lognormal approximation. He reports OLS regression estimates 
in a framework explaining the observed change in a selected poverty measure on the 
                                                 
4 Specifically, Gibrat (1931) argued that the good empirical performance of the lognormal density could be 
rationalized under the following three conditions: (i) in each period the distribution of income is derived 
from that of the previous period by assuming that the variable corresponding to each member of the 
distribution is affected by a small proportionate change; (ii) such proportions differ for different members 
of the distribution; and (iii) these differences are determined randomly according to a given frequency 
distribution.  
5 Rutherford performed single-country estimations using data for the UK in 1949; USA in 1947 and 1948; 
Canada in 1947, Australia in 1951, Sri Lanka (Ceylon at the time the paper was written) in 1950 and 
Bohemia (modern Slovakia and the Czech Republic) in 1932. 
6 For example, Dollar and Kraay (2002) resort to the assumption of lognormality in order to complete their 
data sample by generating quintile shares from Gini coefficients for those observations for which only the 
latter is available. 
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basis of two regressors: a “growth effect”, given by average income growth times the 
theoretical growth elasticity of poverty calculated under the lognormality assumption, 
and an “inequality effect”, given by the change in inequality (as measured by the standard 
deviation of log income) times the theoretical inequality elasticity of poverty as derived 
under the lognormality assumption as well. Under the null of lognormality, both 
regressors should carry coefficients equal to unity.  

 
When this empirical approach is implemented on a sample of developing-country 

growth spells, with the change in headcount poverty as dependent variable, Bourguignon 
(2003) rejects the null of lognormality but still finds that the lognormal specification 
provides a good empirical approximation to actual poverty changes. When the dependent 
variable is instead the change in the poverty gap, the null hypothesis is still rejected, and 
in addition the fit of the regression is quite poor.  

 
There are, however, two problems with this approach. The first one, noted by 

Bourguignon, is that the elasticity-based approach is valid only for infinitesimal changes 
in poverty and its determinants. Applying it to discrete changes can result in large 
approximation errors, especially given the long duration (ten years and over) of some of 
the spells in Bourguignon’s sample.  The second problem is the implementation of the 
approach using poverty databases, which tend to be relatively small, typically include a 
considerable number of outliers,7 and often involve substantial measurement error. The 
latter is further exacerbated by first-differencing the data for the regressions, which raises 
the noise-to-signal ratio. Below we present a new test of lognormality of the distribution 
of income that is not subject to these concerns. 
 
II.1 Empirical approach  
 
 In spirit, our approach is closest to that employed by Rutherford (1955). As noted 
above, for several countries (one at a time) he compared the observed quintiles of the 
distribution of income with their theoretical counterparts derived under the null 
hypothesis of lognormality. Formally, we exploit the one-to-one mapping that arises 
under lognormality between the Gini coefficient and the Lorenz curve L(p) that describes 
the relative income distribution.8  Letting G and σ  respectively denote the Gini 
coefficient, and the standard deviation of log income, Aitchison and Brown (1966) show 
that lognormality implies 
 

)
2

1(2 1 G+
Φ= −σ ,       (1) 

and 

( )σ−ΦΦ= − )()( 1 ppL ,      (2) 
 
where (.)Φ denotes the cumulative normal distribution. Hence a change in the Gini 
coefficient, and thus in σ, must be reflected in a matching change in the Lorenz curve 

                                                 
7 Kraay (2005) uses a filter to eliminate extreme observations from his poverty dataset. This results in the 
loss of over one-third of his original sample. 
8 Recall that L(p) is the aggregate income share of the bottom 100p percent of the population. Thus, L(0)=0 
and L(1)=1. 
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(Aitchison and Brown 1966, chapter 11).  Likewise, changes in the Lorenz curve itself 
can be mapped into changes in the Gini coefficient.  
 

On a cross-country basis, what is usually available to the researcher is some 
summary information on the shape of the Lorenz curve. One such summary is provided 
by the income shares of the different quintiles of the population: 

 
. 4321for ))1(2(.)2(.20 ,,,jjLjLQ j =−−=     (3) 

 
Given the one-to-one mapping between the Gini coefficient and the Lorenz curve 

that follows from (1) and (2), under lognormality there must be also a one-to-one 
mapping between the Gini coefficient and the quintile shares (3). Thus, a test of the null 
hypothesis of lognormality can be based on the comparison of the empirical quintiles, say 
E20j, with their Gini-based theoretical counterparts jQ20 . Following this approach, a 
formal lognormality test can be performed on the basis of the regression model:  

 
it
j

it

j

it
j vQE ++=

2020 βα ,       (4) 

 
where j=1,2,3,4 denotes the income quintile; i=1,2,…,N is a country index, and 
t=1,2,…,Ti denotes the date of each income (or expenditure) survey available for country 
i. In general Ti will differ across countries, resulting in an unbalanced sample. In (4), the 
theoretical quintiles it

j
Q

20
are constructed on the basis of the observed Gini coefficients 

Git, as implied by (1)-(3): 
 







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itit
it

j

GjGjQ . (5) 

 
Testing for lognormality in (4) is equivalent to testing the joint null hypothesis:  
 
α =0;  β =1.         (6) 

 
We should note that the precise null hypotheses entertained here is that the size 

distribution of income is described by a two-parameter lognormal function. Strictly 
speaking, rejection of (6) does not quite amount to rejection of lognormality more 
generally, since the distribution of income might still be characterized by a three-
parameter lognormal density. This could happen, for example, if per capita income 
follows a displaced lognormal distribution -- i.e., it is lognormal over the range above 
some unknown minimum level τ  (where τ  is expressed as a ratio to average per capita 
income). In such case,9 the variance of log income, and hence the Gini coefficient, remain 
unaffected, but from Aitchison and Brown (1969, p.15) it follows that  
 

( )σττ −ΦΦ−+= − )()1()( 1 pppL .     (7) 
 

                                                 
9 Explored, for example, by Metcalf (1969), who fits a displaced lognormal to U.S. personal income. 



 -6-

Expression (3) can still be used to compute the theoretical quintiles that 
correspond to any given Gini coefficient and shift τ. However, a regression like (4) 
projecting observed income shares on their counterparts constructed under the null of 
lognormality, ignoring the shift of the distribution (that is, assuming τ = 0 when in reality 
τ >0), will result in a positive intercept and a slope less than 1 under the null. The bigger 
the shift τ, the larger the constant and the smaller the slope. 
 
 Finally, even if the true income distribution is characterized by the conventional 
two-parameter lognormal function, the observed distribution may follow a more complex 
form if the availability of data is limited. Data might be completely unavailable outside 
some income range, like in the textbook truncation case, or availability could vary in 
some systematic fashion with the level of income, like in the model of survey non-
compliance examined by Deaton (2004). Depending on the particulars, a number of 
possibilities arise regarding the distribution of observed income. Under some special 
assumptions (illustrated by Deaton 2004), it might still be described by a two-parameter 
lognormal, although both its mean and variance could differ from those of the true 
distribution, but under more general conditions it may be characterized by more complex 
truncated lognormal distributions, in which case the simple relations (1)-(2) break down 
and inference based on (4) will reject the null hypotheses (6).10 
 
II.2 Estimation Issues  
 

The choice of estimation technique for (4) is dictated by the properties of the 
residual term it

jv . If the residuals are i.i.d., OLS suffices to test the null of lognormality. 
However, there are two reasons why the assumption of independence may not hold. First, 
the residuals for a given country may be correlated across different surveys. In this 
regard, Lopez (2004) finds that the Gini coefficient shows significant persistence over 
time, and this suggests that the discrepancy between observed quintile shares and 
nonlinear transformations of the Gini as in (5) may also show persistence. Second, for 
any given survey all four theoretical quintiles are derived from the same Gini coefficient, 
and hence the residuals of the four regression observations that result may be mutually 
correlated.  

 
In these circumstances, OLS estimates of α and β  will still be consistent but 

inference based on the usual OLS covariance matrix will be inappropriate. Of course, 
valid inference can be performed using a robust estimator of the covariance matrix of the 
OLS coefficients that takes into account the lack of independence of the residuals, as well 
as their potential heteroskedasticity.  However, under appropriate assumptions about the 
structure of the residual covariance matrix, more efficient inference may be possible. 
Specifically, assume that the disturbance term follows an error-components model: 

 
it
ji

it
jv εµ += ,        (8) 

 
or the more general  

 

                                                 
10 For example, if the sample is truncated from below (i.e., low-income observations are lost) then it can be 
shown that linear regressions like (4) will yield negative intercepts and slopes above unity.  
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it
j

t
ii

it
jv εηµ ++= ,       (9) 

 
where µi is an unobservable country-specific effect, assumed to be i.i.d. with zero mean 
and variance 2

µσ ; t
iη  denotes an effect specific to the tth survey for the ith country, also 

assumed i.i.d. with zero mean and variance 2
ησ , and it

jε  denotes the residual disturbance,  

assumed i.i.d. with zero mean and variance 2
εσ .11  The µi’s, t

iη ’s, and the it
jε ’s are 

assumed mutually independent. Under these assumptions, the covariance structure of the 
error term is: 
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  (10) 

 
These expressions define a two-way error-components model in which the survey-
specific effect t

iη  is nested in the country-specific effect µi.  If 2
ησ = 0, (9) reduces to the 

standard error-components model (8).  
 
The parameters of the nested error components model given by (4) and (9)-(10) 

can be estimated in a variety of ways, ranging from ANOVA-type to minimum quadratic- 
norm and maximum likelihood estimation.12 On the whole, Monte Carlo evidence 
reported by Baltagi et al. (2001) suggests that the method chosen makes little difference 
for the estimates of the regression coefficients in (4). However, when -- like in our case -- 
one is also interested in the standard errors of the parameter estimates, as well as in the 
variance components themselves, maximum likelihood estimation offers the best 
performance, especially if the sample is severely unbalanced.13  

 
II.3 Data  
 

We implement the empirical approach described above using the Dollar and 
Kraay (2002) dataset, which comprises 794 country-year observations for which both the 
Gini coefficient and the quintile shares are available.14 The dataset combines observations 
for which both the Gini coefficient and the quintile shares refer to gross (i.e. before taxes 
and transfers) income (47 percent of the observations); net (i.e. after taxes and transfers) 
income (29 percent of the observations); and expenditure (24 percent). 

 
Table 1 presents some descriptive statistics. The average Gini coefficient is 

roughly the same in the income and expenditure subsamples -- 0.37 for income and 0.38 
for expenditure. This is somewhat surprising since on the basis of conventional 

                                                 
11 These assumptions can be further relaxed to allow for heteroskedasticity of it

jε . 
12 See Baltagi et al. (2001) and Davis (2002) for discussion. 
13 See Rabe-Hesketh et al. (2004) on the computational aspects of ML estimation in this context. 
14 We discard the 158 extra observations for which Dollar and Kraay construct the quintile shares from the 
Gini coefficient using equations (1)-(3), and thus assuming that the distribution of income is lognormal -- 
which is precisely what our regressions aim to test.  
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smoothing arguments one would expect less dispersion in the expenditure-based 
surveys.15 One might wonder if in our sample the result is driven by the fact that the 
panel is unbalanced. But even if we give equal weight to each country’s average Gini 
coefficient we find a similar picture: the resulting overall means are 0.40 for income-
based and 0.42 for expenditure-based observations, respectively. The latter, however, are 
more concentrated around their mean. In other words, there is a lower frequency of 
countries with extreme (whether high or low) inequality in the expenditure-based 
subsample than in the income-based subsample.  
 

On the other hand, there is a noticeable difference between the average Gini 
coefficients of the subsamples based on gross and net income. Gross income-based Gini 
coefficients average 0.40, whereas those based on net income average 0.33. Although one 
should be careful in attaching any particular economic interpretation to these figures, it is 
tempting to view them as reflecting the effect of government interventions that lead to 
income redistribution.  
 
III Empirical results 
 

We turn to the empirical implementation of the lognormality tests. We perform 
them on the full sample as well as different sub-samples defined by type of data -- i.e., 
according to whether the observations are based on expenditure or income surveys and, in 
the latter case, whether income is measured on a net or gross basis. Apart from allowing 
some robustness checks, this differentiation is also of interest for two other reasons. First, 
if the distribution of income is lognormal, and households engage in consumption 
smoothing, the distribution of consumption will not be lognormal in general.16 Hence the 
common practice of pooling together income- and expenditure-based observations in 
applied work could yield misleading test results in our case. Second, gross income could 
be lognormally distributed while net income is not -- for example if taxes and transfers 
are lump-sum rather than proportional to income.   

 
To be specific, in addition to (i) the full sample we also consider sub-samples of 

(ii) income-based observations only (labeled “Income” for short); (iii) expenditure-based 
observations only (“Expenditure”); (iv) gross income-based observations only (“Gross 
Income”); (v) a combination of expenditure and net income-based observations (“Net”); 
and finally (vi) net income-based observations only (“Net Income”). 

 
For the full sample, Figure 1.(a) shows a scatter plot of the observed quintile 

shares (vertical axis) against their theoretical counterparts, as computed under the null 
hypothesis of lognormality (horizontal axis). The data points cluster along the 45-degree 
line, suggesting that the lognormal distribution provides a fairly close approximation to 
                                                 
15 For this reason, Forbes (2000) and Deininger and Squire (1996) raise expenditure-based Gini coefficients 
by 0.066 to make them comparable with income-based ones. 
16 Under consumption smoothing, current consumption will depend on some weighted sum of current and 
future anticipated income. In the textbook permanent-income model, the consumption level of household h 

in period t would take the form [ ]
 ∑

∞

=
−++=

ts
h
sxtEtsrh

tAh
tC )1(θ , where x is income, A denotes 

financial wealth, r is the real interest rate, θ is a parameter, and Et denotes the conditional expectation. 
Even if xs is lognormally distributed, the infinite sum in the square brackets will not be in general, a simple 
consequence of the fact that the sum of lognormally-distributed variables is not itself lognormally 
distributed.  
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the size distribution of per capita income / expenditure as summarized by the quintile 
shares. Figures 1.(b)-1.(f) present similar plots for the various subsamples.17  

 
Table 2 presents the results of OLS-based lognormality tests for the full sample 

and the various subsamples described above. The standard errors of the estimates are 
computed using a clustering procedure to allow for residual dependence; they also allow 
for heteroskedasticity.18  
 

The first thing that stands out in the table is the excellent fit of the regressions in 
all the samples considered, with R2 ranging from 0.95 to 0.98. For a cross-country sample 
of this magnitude, such fit is remarkable. In turn, the regression slopes and intercepts are 
very close to their expected values under the null of one and zero, respectively. It is worth 
noting that in the samples including expenditure observations (the first, third and fifth 
columns) the estimated slopes are slightly below one, while the opposite happens in the 
regressions including only income-based observations. Formally, we can reject the null of 
unit slope in the Expenditure and Net subsamples (third and fifth columns). In turn, the 
estimated intercepts are positive in the samples including expenditure-based observations 
and negative in those including only income-based observations. Like with the slopes, in 
the Expenditure and Net subsamples we can also reject the null of zero intercept.  
 

The bottom of Table 2 reports Wald tests of the null hypothesis of lognormality 
(6). Under the null, the test statistic follows a chi-square distribution with two degrees of 
freedom. As would be expected in the light of the point estimates, the null can be rejected 
at the 5 percent level in the two samples in which expenditure-based observations 
represent a sizeable share of the total number of data points. In contrast, the samples 
containing only income-based observations show little evidence against the null -- the p-
values range from 0.62 to 0.93. In the full sample, in which expenditure-based 
observations represent only about 20 percent of the total, we also fail to reject the null, 
with a p-value of 0.35.  

 
On the whole, the lognormality tests based on the OLS estimates suggest that the 

size distribution of income and expenditure follow significantly different patterns. In 
contrast, the distinction between gross and net income seems to be of little consequence. 
Table 3 repeats the same tests of Table 2 now based on ML estimation of the nested 
error-component model given by (4) and (9)-(10). In addition to the information 
contained in the preceding table, Table 3 also reports the estimated standard deviations of 
the error components in (9), and the results of tests of their individual and joint 
significance.  

 
Inspection of Table 3 reveals a picture very similar to the one emerging from 

Table 2, in terms of both point estimates and standard errors. The pattern of signs and 
magnitudes of the point estimates across samples is the same as before. The middle block 
of the table reports the estimated standard deviations of the error components. The 

                                                 
17 Figures 1(e) and 1(f) show an apparent outlying observation (corresponding to Q2 in Norway 1989), 
which might be viewed as a candidate for removal from the sample. This, however, would be of no 
consequence for any of the empirical results in the paper. 
18 The clustering is done by country. Doing it instead by survey yields slightly larger standard errors but 
does not cause any qualitative changes on the results of the hypothesis tests. 
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standard deviation of the survey-specific effect ησ is in all cases quite small -- indeed, 

much smaller much than that of the country-specific effect µσ . 
 
The lognormality tests yield the same qualitative conclusion as before: the 

evidence from the full sample and the three income-based samples is consistent with the 
null hypothesis of lognormality, as reflected in p-values ranging from 0.41 in the full 
sample to 0.92 in the Gross Income sub-sample. In contrast, the null is rejected at the 5 
percent level in the Expenditure and Net subsamples. 

 
The last three rows of Table 3 report tests of significance of the error components. 

The null hypothesis that the variances of the two error components are jointly zero ( 2
µσ = 

2
ησ = 0) is rejected in all cases. As for the nested survey-specific component, its variance 
2
ησ is insignificant in the Income and Expenditure subsamples; in addition, it falls just 

short of 5 percent significance in the Gross Income and Net Income subsamples. In turn, 
the variance of the country-specific component 2

µσ  is significant at the 5 percent level in 
four of the six samples, and at the 10 percent level in the other two -- the Expenditure and 
Gross Income subsamples.  

 
On the whole, we may view these tests as generally supportive of the nested error 

component specification, except in the Income and Expenditure subsamples, where the 
test results suggest that a one-way model might be sufficient. To investigate this further, 
Table 4 reports the results of estimating the standard random effects model given by (4) 
and (8) for the Income and Expenditure subsamples. The results in the table continue to 
support the same basic message as before. The parameter estimates are almost identical to 
those in the preceding table, as are the results of the lognormality tests: strong rejection of 
the null in the expenditure-based sample, and failure to reject it in the income-based 
sample.  

 
In summary, the empirical tests reported in this section show that in a large cross-

country sample the observed distribution of per capita income is consistent with the 
hypothesis of lognormality -- regardless of whether income is measured before or after 
taxes and transfers.  In contrast, the same tests reject lognormality of the distribution of 
per capita expenditure -- although the lognormal specification can still account for a very 
high proportion of the observed variation in quintile shares even in the expenditure data. 

 
IV. Growth, inequality and poverty 
 

The finding that per capita income follows a lognormal distribution has important 
practical implications for assessing the respective contributions of growth and inequality 
to poverty changes. The reason is that under lognormality we can derive simple closed-
form expressions for these contributions, which depend only on the prevailing degree of 
inequality, and on the poverty line relative to mean per capita income.  

 
For concreteness, let us focus on the Foster-Greer-Thorbecke (1984) [henceforth 

FGT] class of poverty measures, which includes those most widely used in applied work. 
They are given by the general expression: 
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where }2,1,0{∈α  is a parameter of inequality aversion, z is the poverty line, x is income, 
and f(.) is the density function of income. When α = 0, (11) reduces to the familiar 
headcount ratio, which measures the share of the population below the poverty line z. For 
α = 1, we get the FGT measure P1, known as the poverty gap, which weighs each poor 
individual by his / her distance to the poverty line -- heuristically, it provides a measure 
of the depth of poverty.  Finally, for α = 2, we have the squared poverty gap P2 , which 
weights each poor individual by the square of his/her income shortfall; thus larger 
shortfalls are weighted more than proportionately.  
 

Denoting average per capita income by ν (i.e., E(x)=ν), the appendix shows that 
under lognormality we can write 

 
),/( GvzPP αα = .        (12) 

 
Thus, poverty depends only on the Gini coefficient and the poverty line relative to 

mean income. Equation (12) provides a starting point to analyze the relative contributions 
of growth and changes in inequality to poverty reduction. For 0=α , Figure 2 plots a set 
of iso-poverty curves (i.e., level sets of equation (12)); each of them depicts combinations 
of Gini coefficients and mean per capita income / poverty line ratios (ν/z) that yield a 
constant poverty headcount 0P .19 Curves to the Northeast of the graph correspond to 
higher levels of the poverty rate. 

 
The slope of these curves depicts the changing tradeoff between growth and 

redistribution. The steeper the slope, the bigger the decline in the Gini coefficient 
required to keep poverty constant in the face of a given decline in the ratio of mean 
income to the poverty line.  The curves become increasingly steep, and closer to one 
another, as we move downward along them. In other words, the more equal and the 
poorer the economy (as reflected, respectively, by a lower Gini coefficient and a lower 
mean income / poverty line ratio), the bigger the change in the Gini coefficient required 
to offset a given change in mean income relative to the poverty line -- i.e., the more 
effective growth will be relative to redistribution in attacking poverty. As the economy 
becomes richer and more unequal -- i.e., as we move to the Northwest of the graph -- the 
curves become less steep, and therefore a smaller change in the Gini coefficient is now 
needed to offset a given change in mean income relative to the poverty line -- i.e., 
distributional change now plays a relatively larger role in poverty changes. 
 
 We can gauge better the relative roles of growth and distributional change by 
evaluating numerically the elasticity of poverty with respect to each of them. From (12), 
for a given poverty line we can write  

 

G
dGd

P
dP

G
αα

ν
α

α η
ν
νη += .       (13) 

                                                 
19 Of course, similar curves can be drawn for .}2,1{∈α  
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Here α

νη  and αηG  respectively are the elasticities of αP with respect to growth20 and 
inequality. The appendix derives their exact expressions under the assumption of 
lognormality, and shows that they depend only on z/v and G. 
 

Tables 5 to 7 report, for the three FGT poverty measures, the values of α
νη  and 

αηG  that result from various combinations of the Gini coefficient G and the ratio of per 
capita income to the poverty line (ν/z). In the tables, G runs from 0.3 to 0.6 and ν/z from 
1 to 6.21  
 

Inspection of these tables confirms the well-known result (e.g., Ravallion 1997, 
2004; Bourguignon 2003) that the growth elasticity of the various FGT measures is 
smaller (in absolute value) the higher the level of inequality. Thus, inequality hampers 
the poverty-reducing effect of growth, as stressed in the literature. In addition, however, 
the tables show that poverty itself (as measured by low per capita income) is another 
barrier to poverty reduction: in all three tables, for a given Gini coefficient, the growth 
elasticity of poverty declines rapidly (in absolute value) as average income declines in 
relation to the poverty line. This suggests a triple poverty-reducing effect of growth: first, 
the direct effect of income growth on the average level of income; second, the indirect 
impact that arises from higher average income via the correspondingly higher growth 
elasticity of poverty; and third, the indirect impact that arises from the higher average 
income via the correspondingly higher growth elasticity of poverty. 
 

Under most scenarios, inequality itself also has a doubly deterrent effect on 
poverty reduction. In addition to lessening the growth elasticity of poverty, as just noted, 
higher inequality also lessens the impact of progressive distributional change itself on 
poverty -- i.e., in tables 5-7 the inequality elasticity falls as inequality rises, for a given 
value of average income relative to the poverty line. However, the relationship is highly 
nonlinear, and at very low levels of development (captured in the tables by values of (v/z) 
close to one) its sign is reversed, so that a higher Gini coefficient is associated with a 
higher inequality elasticity, as shown in the last line of Tables 5 -7.  

 
The implication is that, given a common poverty line, poorer and more equal 

countries may be in a position to afford some growth-inequality tradeoffs. For low values 
of (v/z), the poverty-reducing effects of growth outweigh the poverty-raising effects of a 
worsening distribution of income. In other words, very poor countries may be willing to 
tolerate modest deteriorations in income equality in exchange for faster growth. Such 
tradeoff is much more problematic in richer and highly unequal countries, where small 
                                                 
20 Strictly speaking, α

νη is the elasticity of poverty with respect to mean income, rather than growth, but we 
follow the standard practice in the literature and use the term “growth elasticity” to refer to the change in 
poverty that results when income increases by one percent, at given inequality. 
21 The range from 0.30 to 0.50 amounts roughly to the mean Gini plus/minus one standard deviation in the 
overall sample (see Table 1). For the simulations, we raise the upper end to 0.60, a value reminiscent of the 
inequality encountered in some Latin American countries. As for the ratio of mean income to the poverty 
line, with poverty defined by the standard US$1 per person per day, the range from 1 to 6 is equivalent to 
annual per capita income levels between US$365 and US$2140 -- which correspond roughly to those of 
Zambia and El Salvador respectively. Alternatively, with poverty defined by a US$2 per person per day 
poverty line, the range for (ν/z) amounts to per capita income levels from US$730 to US$4280 -- 
approximately the income levels of Indonesia and Uruguay, respectively. 
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inequality increases have a much larger poverty-raising effect, and hence policy makers 
may be more willing to accept a modest growth decline in exchange for a reduction in 
inequality.  
 

Another way to gauge the relative importance of growth and redistribution from 
the poverty reduction viewpoint is to measure the respective contributions of growth and 
inequality shocks to the observed variation in poverty. This is the approach followed by 
Kraay (2005). Under lognormality, it follows from (13) that the variance of poverty 
changes can be approximated as  
 

)cov(2)var()()var()()var( 22

G
dGd

G
dGd

P
dP

GG ν
νηηη

ν
νη αα

ν
αα

ν
α

α ++= .  (14) 

 
In the general case of nonzero covariance between growth and inequality changes, 

absent any information on their mutual causal precedence, we can use the simplifying 
assumption that half the covariance can be attributed to growth, and the other half to 
inequality changes. In such case the share of the total variance attributable to the growth 
component is: 
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α
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P
dP

G
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P
dP g+

= .    (15) 

 
However, to implement (15) numerically we need three more ingredients, namely 

the variance of growth, the variance of inequality changes, and the covariance of growth 
with inequality changes. Table 8 reports these statistics computed on the basis of two 
alternative datasets: the one used thus far in this paper (i.e., Dollar and Kraay 2002), and 
the Povmonitor22 database. Figure 3 presents the respective scatter plots. Apart from 
coverage (much more limited in Povmonitor), the main difference between both 
databases is that the Dollar and Kraay income data is based on National Accounts, 
whereas that in Povmonitor is based on household surveys.  
 

Inspection of Table 8 suggests that the different coverage of the two databases is 
of little consequence for the volatility of changes in the (log) Gini coefficient: in both 
cases the standard deviation is about 0.05. However, the volatility of growth differs more 
markedly across the two databases: in the survey-based Povmonitor data, the standard 
deviation of growth (0.06) is slightly higher than that of inequality changes, while the 
opposite happens in the National Accounts-based Dollar and Kraay data, in which the 
standard deviation of growth (0.04) is lower than that of inequality changes. On the other 
hand, Table 8 also shows that growth and changes in inequality are nearly uncorrelated in 
both databases -- a conclusion confirmed by the scatter plots in Figure 3. Although the 
correlation coefficients in the table are of opposite signs (negative in the Dollar and 
Kraay data, and positive in the Povmonitor data), both are insignificantly different from 
zero.23 
                                                 
22 http://www.worldbank.org/povmonitor. 
23 Similar evidence is provided by Deininger and Squire (1996), Chen and Ravallion (1997) and Easterly 
(1999). 
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Using these results, Tables 9 and 10 report the simulated values of expression (15) 

for alternative values of the Gini coefficient and the mean income / poverty line ratio, 
using the variance and covariance patterns of growth and inequality changes shown in the 
preceding table. Table 9 uses the values from the Dollar and Kraay sample, while Table 
10 uses the values from Povmonitor. In both tables, a number close to 1 means that in the 
scenario in question changes in the poverty measure of interest are mainly driven by 
growth, whereas a number close to zero means that they are mainly driven by changes in 
inequality.24  

 
The simulations in Tables 9 and 10 suggest that, consistent with the previous 

discussion, in poorer and more equal countries growth accounts for a larger share of the 
variance of poverty changes. Conversely, inequality changes tend to play a more 
prominent role in richer and/or more unequal countries. This again suggests that in the 
former countries growth should be expected to be the main driver of poverty reduction, 
while the opposite would happen in the latter countries. 

 
Notice also that, for any given configuration of Gini coefficient and per capita 

income / poverty line ratio, the relative contribution of growth to the overall variance of 
poverty changes declines as the poverty measure of interest varies from headcount 
poverty to the poverty gap and then its square. As noted by Kraay (2005), this is a natural 
consequence of the fact that more bottom-sensitive poverty measures place more weight 
on changes in the distribution of income than on changes in average income. 
 

So far we have implicitly viewed alternative values of (ν/z) as reflecting different 
levels of average per capita income with a given poverty line. But they could also be 
interpreted the other way around, namely reflecting alternative poverty lines with a given 
level of average per capita income. In this view, the numerical results above imply that as 
the relevant poverty line z becomes more generous -- i.e., as (ν/z) declines -- the relative 
role of growth in the overall variation of poverty changes must go up as well, and other 
things equal this offers a rationale for shifting poverty reduction priorities in favor of 
growth-oriented policies. In the limit, as (ν/z) falls to zero – so that the poverty rate 
approaches 1 – distributional change becomes completely ineffective for poverty 
reduction. In other words, given the choice of poverty measure αP  and the initial 
conditions in terms of average income and inequality, the location of the poverty line is a 
key determinant of the relative effectiveness of growth and redistribution for poverty 
reduction.  
 
V. Conclusions   
 
 The focus on poverty reduction as the key objective of development policy has 
opened a debate on the relative merits of aggregate growth and distributional change as 
anti-poverty strategies, and the conditions under which one may be more effective than 
the other. In this paper we have reexamined that question using a parametric approach to 
model the distribution of per capita income. The parametric approach has a long tradition 
in the literature, going back over a century. One of its key advantages is that it allows a 

                                                 
24Note that in this calculation we are implicitly assuming that the same variance / covariance pattern applies 
regardless of the particular configuration of Gini coefficient and mean income/ poverty line ratio.  
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systematic assessment of how country-specific initial conditions -- inequality, level of 
development and poverty line definition -- affect the poverty-reduction effectiveness of 
growth and income redistribution.  

 
The paper’s approach is based on the use of a lognormal approximation to the size 

distribution of per capita income. We implement this approach in two stages. First, we 
perform empirical tests of lognormality of the observed distribution of income, using a 
large cross-country income and expenditure distribution dataset covering over 100 
countries and 40 years. Our testing strategy is based on the comparison of the observed 
quintile shares of the distribution with their theoretical counterparts under the null 
hypothesis of lognormality.  

 
The empirical tests, performed on the full data sample as well as a variety of 

subsamples, are very supportive of the lognormal approximation to the distribution of per 
capita income, but less so for per capita expenditure. In the former case, the null of 
lognormality cannot be rejected in any of the samples considered; in the latter case, it is 
consistently rejected. In both cases, however, the lognormal specification yields a very 
close approximation to the observed distribution.  

 
Lognormality of the distribution of income allows us to derive, at the second stage 

of the analysis, some qualitative and quantitative implications for the relative roles of 
growth and inequality in poverty reduction under alternative initial conditions, using a 
variety of poverty measures. 

 
Our conclusions can be summarized in four main points. First, inequality hampers 

poverty reduction, not only because of its negative impact on the growth elasticity of 
poverty (as stressed in the literature) but, in most scenarios, also because of its negative 
impact on the inequality elasticity of poverty. Second, for a given poverty line, the impact 
of growth on poverty is stronger in richer than in poorer countries, and hence the latter 
will find it harder than the former to achieve fast poverty reduction. Third, the share of 
the overall variance of poverty changes attributable to growth should be generally lower 
in richer and more unequal countries. And fourth, for given initial levels of development 
and inequality, the relative poverty-reduction effectiveness of growth and inequality 
changes depends on the poverty line -- the higher the poverty line, the bigger the role of 
growth and the smaller the role of distributional change. 
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Gini 
Coefficient Q1 Q2 Q3 Q4

Mean 0.37 0.07 0.11 0.16 0.22
Median 0.35 0.07 0.12 0.16 0.22
Standard Deviation 0.10 0.02 0.03 0.03 0.02

Mean 0.37 0.06 0.11 0.16 0.22
Median 0.35 0.06 0.12 0.17 0.23
Standard Deviation 0.10 0.02 0.03 0.03 0.03

Mean 0.40 0.06 0.11 0.15 0.22
Median 0.37 0.05 0.11 0.16 0.23
Standard Deviation 0.11 0.02 0.03 0.03 0.03

Mean 0.33 0.07 0.12 0.17 0.23
Median 0.31 0.08 0.13 0.17 0.23
Standard Deviation 0.92 0.02 0.02 0.02 0.02

Mean 0.38 0.07 0.11 0.15 0.21
Median 0.36 0.07 0.12 0.16 0.22
Standard Deviation 0.87 0.02 0.02 0.02 0.01

Net Income (892 observations) a/

Note:  (a/) The total number of observations of the Gross Income and Net Income 
subsamples does not equal to the number of observations of the Income subsample because 
56 observations are not classified.

Expenditure (756 observations)

Table 1. Descriptive statistics, by sample

All (3,176 observations)

Income (2,420 observations)

Gross Income (1,472 observations) a/
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All Income
Gross 

Income Net

β 0.983 1.009 0.897 * 1.014 0.961 * 1.006
s.e. 0.014 0.015 0.012 0.021 0.016 0.017

α 0.002 -0.001 0.013 ** -0.001 0.005 ** -0.001
s.e. 0.002 0.002 0.002 0.002 0.002 0.002

R2 0.96 0.96 0.98 0.95 0.98 0.98
# Observations 3,176 2,420 756 1,472 1,484 892
# Countries 130 98 65 75 97 55

Test of the joint hypothesis
Ho: α =0;  β =1
(p-value) 0.35 0.76 0.00 0.62 0.05 0.93

(*)  Ho: β=1 rejected at the 5%.
(**) Ho: α=0 rejected at the 5%.

Table 2. Lognormality tests

Notes:  The table reports regression results with the observed quintile as dependent variable and the theoretical quintile as 
explanatory variable. All regressions include a constant. Robust standard errors using a clustering procedure are reported 
below the coefficients.

Pooled OLS

Expenditure
Net 

Income

Sample

 

All Income
Gross 

Income Net

β 0.980 1.007 0.894 * 1.009 0.960 * 1.009
s.e. 0.015 0.016 0.012 0.023 0.016 0.017

α 0.002 -0.001 0.013 ** -0.001 0.005 ** -0.001
s.e. 0.002 0.002 0.002 0.003 0.002 0.002

# Observations 3,176 2,420 756 1,472 1,484 892
# Countries 130 98 65 75 97 55

σε 1.00E-02 1.24E-02 7.35E-03 1.41E-02 2.59E-02 8.62E-03
ση 3.24E-07 3.67E-12 1.24E-08 3.51E-07 6.55E-07 4.69E-08
σµ 2.68E-03 3.42E-03 2.10E-03 5.20E-03 1.90E-03 1.92E-03

Hypothesis tests
(p-values)
Ho: α =0;  β =1 0.41 0.90 0.00 0.92 0.05 0.80
Ho: ση=σµ=0 0.00 0.00 0.02 0.00 0.00 0.00
Ho: ση=0 0.04 0.50 0.50 0.08 0.03 0.07
Ho: σµ =0 0.00 0.03 0.08 0.08 0.00 0.01

(*)  Ho: β=1 rejected at the 5%.
(**) Ho: α=0 rejected at the 5%.

Nested Error Component Model

Expenditure

Table 3. Lognormality tests

Notes: The table reports regression results with the observed quintile as dependent variable and the theoretical quintile as 
explanatory variable. All regressions include a constant. Robust standard errors are reported below the coefficients.

Net 
Income

Sample
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Income

β 1.007 0.894 *
s.e. 0.016 0.012

α -0.001 0.013 **
s.e. 0.002 0.002

# Observations 2,420 756
# Countries 98 65

Test of the joint hypothesis
Ho: α =0;  β =1
(p-value) 0.90 0.00

(*)  Ho: β=1 rejected at the 5%.
(**) Ho: α=0 rejected at the 5%.

Table 4. Lognormality tests

Notes: The table reports regression results with the observed quintile as 
dependent variable and the theoretical quintile as explanatory variable. All 
regressions include a constant. Robust standard errors are reported below 
the coefficients. 

Random Effects Model

Expenditure

Sample
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Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 -6.05 -3.25 -1.95 -1.22
3 -3.94 -2.18 -1.33 -0.86
2 -2.80 -1.60 -1.01 -0.66

1.5 -2.06 -1.23 -0.80 -0.54
1 -1.16 -0.78 -0.55 -0.39

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 12.34 7.38 5.10 3.89
3 5.17 3.28 2.42 1.97
2 2.48 1.70 1.35 1.18

1.5 1.20 0.92 0.81 0.77
1 0.18 0.24 0.29 0.35

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 -6.45 -3.59 -2.22 -1.44
3 -4.45 -2.57 -1.64 -1.09
2 -3.37 -2.02 -1.32 -0.90

1.5 -2.68 -1.67 -1.12 -0.77
1 -1.83 -1.23 -0.86 -0.62

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 14.08 9.01 6.64 5.38
3 6.70 4.69 3.73 3.22
2 3.82 2.92 2.49 2.27

1.5 2.36 1.98 1.81 1.73
1 1.03 1.05 1.08 1.13

Table 5. Headcount: Theoretical elasticities under lognormalty

Growth Elasticity

Inequality Elasticity

Note: The table reports the theoretical growth and inequality 
elasticities, computed under the assumption of log normality,  as a 
function of the ratio of mean income/poverty line and the Gini 
coefficient.

Table 6. Poverty gap: Theoretical elasticities under lognormalty

Growth Elasticity

Gini Coefficient

Gini Coefficient

Inequality Elasticity

Note: The table reports the theoretical growth and inequality 
elasticities, computed under the assumption of log normality,  as a 
function of the ratio of mean income/poverty line and the Gini 
coefficient.

Gini Coefficient

Gini Coefficient

 



 -23-

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 -6.79 -3.85 -2.41 -1.59
3 -4.84 -2.85 -1.84 -1.24
2 -3.80 -2.32 -1.53 -1.05

1.5 -3.12 -1.97 -1.33 -0.92
1 -2.27 -1.52 -1.06 -0.76

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 15.58 10.34 7.83 6.46
3 7.98 5.80 4.71 4.11
2 4.92 3.88 3.34 3.05

1.5 3.31 2.81 2.55 2.42
1 1.73 1.69 1.68 1.70

Inequality Elasticity

Growth Elasticity
Gini Coefficient

Table 7. Squared poverty gap: Theoretical elasticities under lognormalty

Note: The table reports the theoretical growth and inequality 
elasticities, computed under the assumption of log normality,  as a 
function of the ratio of mean income/poverty line and the Gini 
coefficient.

Gini Coefficient

  
 
 
 
 

Source
Change in 
Inequality

GDP 
Growth

Dollar and Kraay (2002) a/ 0.054 0.037 -0.020
Povmonitor b/ 0.049 0.063 0.070

Notes:
(a/) Based on PWT national accounts.
(b/) Based on survey data (http://www.worldbank.org/povmonitor).

Table 8. GDP growth and changes in inequality: Descriptive statistics

Standard Deviation Correlation between 
Change in Inequality and 

GDP Growth
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Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 0.28 0.24 0.19 0.14
3 0.48 0.41 0.32 0.23
2 0.66 0.58 0.47 0.33

1.5 0.82 0.73 0.60 0.44
1 0.98 0.94 0.84 0.66

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 0.25 0.20 0.15 0.11
3 0.41 0.32 0.24 0.16
2 0.55 0.43 0.31 0.20

1.5 0.67 0.53 0.38 0.24
1 0.83 0.68 0.50 0.32

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 0.23 0.18 0.13 0.09
3 0.37 0.28 0.20 0.13
2 0.48 0.36 0.25 0.16

1.5 0.58 0.44 0.30 0.19
1 0.73 0.56 0.39 0.24

Table 9. Share of variance in poverty changes due to growth a/

Notes:  The table reports the share of the overall variance of the 
poverty measures, computed under the assumption of 
lognormality, attributable to income growth as a function of the 
ratio of mean income/poverty line and the Gini coefficient.
(a/) Calculated using the variances and covariance of growth and 
changes in inequality from the Dollar and Kraay (2002) database.

Headcount

Poverty Gap

Squared Poverty Gap

Gini Coefficient

Gini Coefficient

Gini Coefficient

(Based on Dollar and Kraay (2002) database)
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Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 0.12 0.10 0.07 0.05
3 0.27 0.22 0.16 0.10
2 0.47 0.37 0.27 0.16

1.5 0.68 0.56 0.40 0.24
1 0.98 0.90 0.73 0.46

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 0.11 0.08 0.06 0.03
3 0.22 0.15 0.10 0.06
2 0.34 0.23 0.14 0.08

1.5 0.47 0.32 0.19 0.10
1 0.70 0.49 0.29 0.15

Mean Income / 
Poverty Line 0.30 0.40 0.50 0.60

6 0.10 0.07 0.05 0.03
3 0.19 0.13 0.08 0.04
2 0.28 0.18 0.11 0.06

1.5 0.37 0.24 0.14 0.07
1 0.55 0.35 0.20 0.10

Table 10. Share of variance in poverty changes due to growth a/

Headcount

Notes:  The table reports the share of the overall variance of the 
poverty measures, computed under the assumption of 
lognormality, attributable to income growth as a function of the 
ratio of mean income/poverty line and the Gini coefficient.
(a/) Calculated using the variances and covariance of growth and 
changes in inequality from the Povmonitor database  
(http://www.worldbank.org/povmonitor).

Squared Poverty Gap

Poverty Gap

Gini Coefficient

Gini Coefficient

Gini Coefficient

(Based on Povmonitor database)
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(f) Net Income

Figure 1. Empirical and Theoretical Quintiles

(a) Full Sample (b) Income

(c) Expenditure (d) Gross Income

(e) Net
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Figure 2. Iso-Poverty Curves for the Headcount Ratio
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Note:  (a/) http://www.worldbank.org/povmonitor.

Figure 3. Income Growth and Changes in Inequality

(a) Dollar and Kraay (2002) Database

(b) Povmonitora/ Database

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Growth in mean survey income

C
ha

ng
e 

in
 in

eq
ua

lit
y

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Growth in mean survey income

C
ha

ng
es

 in
 In

eq
ua

lit
y

 
 
 



 -28-

Appendix 
 
In this appendix we derive the growth and inequality elasticities of the FGT family of 
poverty measures, given by  
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where }2,1,0{∈α . When log x is normally distributed with mean µ and variance σ2 we 
can denote f(x) dx by dΛ(x/µ,σ2), so that we can express the different FGT measures as: 
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In order to derive the growth and inequality elasticities of the FGT family under 
lognormality we make use of the following result:  
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which follows from Theorem 2.6 in Aitchison  and Brown (1966).  Using (A5) we can 
express (A2-A4) respectively as: 
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Combining these expressions with the relationship linking the normal and lognormal 
distributions  
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( )( )σµσµ /log)log(log)(),/( 2 −Φ=<=<=Λ∫ zzxPzxPxd
z

o

,  

where Φ(.) is the standard normal cumulative density function; and using also the identity 
linking average per capita income ν to the mean and variance of log income, log ν = 
µ+σ2/2, (A6) -- (A8) can be rewritten as 
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which shows that ),/( σαα vzPP = , and inverting equation (1) in the text we can further 
write ),/( GvzPP αα = .  
 
Growth elasticities 
 
For P0 , the growth elasticity can be found in Bourguignon (2003). It is given by  
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where (.)/(.)(.) Φ= φλ , and φ(.) denotes the standard normal density. In turn, for 

}2,1{∈α  we can use a result by Kakwani (1990): 
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Inequality elasticities. 
 
For P0 , the elasticity of poverty with respect to the standard deviation of log per capita 
income is given by: 
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In turn, from (1) in the text 
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and hence the Gini elasticity of poverty is given by 
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The sign of this expression depends on that of )/log(
2

2

νσ z− ; it is positive for z>ν -- 

i.e., when mean income is above the poverty line -- but becomes negative as 0)/( →zν .  
 
In order to derive the expressions for the Gini elasticity of P1 and P2 we define: 
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First, we consider the elasticities of P1 and P2 with respect to the standard deviation of 
log per capita income, which follow from (A10) and (A11): 
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Using again (A15) we finally get: 
 

))
2

(2/()
))(())((

(
1

1

GP

ab
z

ba
G

σσφ
φνφ

η
−−−

= ,     (A22) 

 
and 
 

).)
2

(2/()
))3)/log()(()(2())((2))((

(
2

2
2

2

2

GP

zcce
z

ab
z

ba
G

σσφ
σ

σ
νφσνφνφ

η

σ −
−

+Φ





+−−−

=

           (A23) 


	forthcoming
	Annals of Economics and Finance
	Forthcoming Article


	aef150203Lopez

