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In this paper, we consider a partially linear varying coefficient cointegra-
tion model. We focus on the estimation of constant coefficients. We derive
the saymptotic result for the local constant kernel estimator, which comple-
ments the results in Li, Li, Liang and Hsiao (2013) where the local polynomial
estimation methods are studied. However, Li et al. (2013) impose stronger
conditions to rule out the local constant estimation due to technical difficulties.
We give the full treatment of the local constant method in this paper based
on a novel proof. From the simulation results reported in the paper, we show
that the local constant and local linear estimators perform similarly, but the
local constant method requires less data. Also, in fnite sample applications
the local linear estimation could suffer from the matrix singularity problem.
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1. INTRODUCTION

Over the last three decades, there has been a surge of interest on both
nonparametric econometric models and nonstationary time series. Re-
cently, the nonparametric nonstationary models have drawn much atten-
tion, which requires the tools and results from handling both nonparametric
models and models with non-stationary data. Similar as linear models, the
results of nonparametric models involving integrated processes are quite
different from those of regressions with stationary time series. In this pa-
per, we consider a partially linear varying coefficient model

Yt = X ′1tγ +X ′2tβ(Zt) + ut, t = 1, . . . , T, (1)

where X1t and X2t are both multivariate integrated processes, and Zt and
ut are univariate stationary processes.

A partially linear model enjoys the advantage of the direct economic
interpretability of parametric coefficients and flexibility of modeling. It
also alleviates the problem of “curse of dimensionality”. Therefore, there
is a large literature on theoretical analysis and empirical applications of
partially linear models in econometrics and economics. In general, it is
tempting to consider a standard partially linear model

Yt = X ′1tγ + g(X2t, Zt) + ut, t = 1, . . . , T, (2)

where g is an unknown smooth function which has both multivariate in-
tegrated process X2t and a stationary process Zt as arguments. However,
the asymptotic theory of unit root processes which we will use in this paper
is based the properties of Brownian motions. Up to now, the asymptotic
theory of nonparametric cointegrating regression is entirely based on the
recurrent property of Brownian motions (see e.g., Karlsen, Myklebust and
Tjøstheim (2007), Park and Phillips (2001), Wang and Phillips (2009a),
Wang and Phillips (2009b)). Unfortunately, Brownian motions are not re-
current when the dimension is greater than or equal to three. Also, the
local time theory of the Brownian motions is not available for the dimension
greater or equal to two. Thus the above-mentioned papers only consider
the scalar case of integrated process in the nonparametric regression. In
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order to circumvent this problem and consider the multivariate case, we
impose the additivity structure in the nonparametric part with varying co-
efficients. The varying coefficient cointegration models themselves are also
very useful. They are considered by Cai, Li, and Park (2009) and Xiao
(2009) recently. Another related paper is Juhl and Xiao (2005), who stud-
ied a partially linear autoregressive model with nonstationarity. Also, Li et
al. (2014) consider the semiparametric estimation of the same model we in-
vestigate and use the local polynomial kernel method to estimate the finite
dimensional parameter and the infinite dimensional function. However, the
conditions they impose rule out the local constant kernel estimation due
to the technical difficulty. Compared with the local polynomial kernel es-
timation, the local constant method is easier to implement and less likely
to encounter singularity problems in finite sample applications.

In this paper, we adopt the standard framework for regression involving
multivariate integrated processes from Park and Phillips (1988) and Park
and Phillips (1989). We focus on the estimation of the constant coefficients
γ. We construct our estimator from the local constant kernel method, and
derive the T consistent asymptotic result for our estimator.

The rest of the paper is organized as follows. We discuss the model and
conditions in Section 2. We give the local constant estimation and derive
the asymptotic results in the Section 3. Monte Carlo simulation results are
reported in Section 4, which shows that our estimator performs well in the
finite sample applications. The proofs are relegated to the appendix.

2. A PARTIALLY LINEAR COINTEGRATION MODEL

We consider the partially linear cointegration model mentioned in intro-
duction as following,

Yt = X ′1tγ +X ′2tβ(Zt) + ut, t = 1, . . . , T, (3)

where X1t is a d1×1 vector of I(1) variables, γ is a d1×1 vector of constant
coefficients, X2t is an I(1) random vector with the dimension of d2 × 1, Zt
and ut are stationary scalar processes (i.e., I(0) variables), and β(·) is a
smooth but unspecified function-valued vector with the dimension d2 × 1.
The prime denotes the transpose.

Let X1t = X1,t−1 + εt and X2t = X2,t−1 + vt, where εt and vt are
weakly dependent stationary vector processes which will be more specific
later. Also, the initial points of the processes will not have impact on our
asymptotic results, therefore, we assume X10 and X20 to be any Op(1)
random variables including constants. We define w′t = (ε′t, v

′
t, ut), and con-

struct a partial sum process BT (r) = T−1/2
∑[Tr]
t=1 wt, where [a] denotes

the largest integer less than or equal to a. We require a multivariate in-
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variance principle holds for BT (r) (see e.g. Phillips and Durlauf (1986)),
then we have BT (r) ⇒ B(r) for r ∈ [0, 1], where B(·) is a Brownian
motion, and “ ⇒ ” represents weak convergence. We decompose BT (r),
B(r) and its variance covariance matrix Ω correspondingly with wt, that is,
BT (r)′ = (B1T (r)′, B2T (r)′, B3T (r)), B(r)′ = (B1(r)′, B2(r)′, B3(r)) and

Ω =

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 = lim
T→∞

T−1E

(
T∑
t=1

wt

T∑
s=1

w′s

)
= Σ + Γ + Γ′,

where

Σ =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 = lim
T→∞

T−1
T∑
t=1

E(wtw
′
t),

and

Γ =

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

 = lim
T→∞

T∑
t=2

t−1∑
j=1

E(wjw
′
t).

As T →∞, by the continuous mapping theorem, we have (see e.g. Park
and Phillips (1988) Lemma 2.1 (c) or Phillips and Durlauf (1986))

T−1
T∑
t=1

(
Xit√
T

)(
Xit√
T

)′
⇒
∫ 1

0

Bi(r)Bi(r)
′dr

def
= B(i), for i = 1, 2,

(4)
and

T−1
T∑
t=1

(
X2t√
T

)(
X1t√
T

)′
⇒
∫ 1

0

B2(r)B1(r)′dr
def
= B(2,1). (5)

Also, we have (see e.g. Park and Phillips (1988) Lemma 2.1 (e))

T−1
T∑
t=1

X1tut ⇒
∫ 1

0

B1dB3+∆13 and T−1
T∑
t=1

X2tut ⇒
∫ 1

0

B2dB3+∆23,

(6)
where ∆13 = Σ13 + Γ13 and ∆23 = Σ23 + Γ23. The joint weak convergence
of (4), (5) and (6) also holds.

Since (3) is a partially linear varying coefficient model, the estimation
involves nonparametric kernel method. We first give some notations and
assumptions. Let f(z) be the probability density function of Zt. Denote
Kh,tz = h−1K((Zt − z)/h), where K(·) is a kernel density function such
that

∫
K(u)du = 1 and h is the smoothing parameter satisfying h→ 0, as
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T → ∞. Also, write β(1)(z) = dβ(z)
dz , and define µj =

∫∞
−∞ ujK(u)du and

νj =
∫∞
−∞ ujK2(u)du, j = 0, 1, 2.

We make the following assumptions:

Assumption 1. For some p > τ > 2, wt = (ε′t, v
′
t, ut) is a strictly

stationary, strong mixing sequence with zero mean and mixing coefficients
αm of size −pτ/(p− τ) and supt≥1 ‖wt‖p = M <∞. In addition,

T−1E(

T∑
t=1

wt

T∑
t=1

w′t)→ Ω <∞ as T →∞,

where Ω is a positive definite matrix.

Assumption 2. (ut,Ft, 1 ≤ t ≤ T ) is a martingale difference sequence

with E(u2t |Ft−1)
a.s.→ σ2

u as t → ∞, where Ft is the σ-algebra generated by
{εs, vs, Zs}, 1 ≤ s ≤ T and {us}, s ≤ t.

Assumption 3. Zt has a compact support Sz. Zt is a strictly stationary
process with mixing coefficients αm of size −γδ/ (γ − δ) and supt ‖Zt‖γ <
M <∞, where γ > δ > 2. Also, ‖β(Zt)‖2+$ < M <∞ for all t and some
$ > 0. β (z) is three times differentiable, and β(z) and all its derivatives
are bounded uniformly over z in the domain of Zt.

Assumption 4. f(z) has bounded and continuous derivatives up to third
order uniformly over z in the domain of Zt, and infz∈Sz f(z) > 0. Also
f(u, v; l1) is bounded for all l1 ≥ 1 where f(u, v; l1) is the joint density
function of (Z0, Zl1) evaluated at (Z0, Zl1) = (u, v).

Assumption 5. K(·) is a bounded probability density function, which is
symmetric around zero.

∫
|K(u)|du ≤ M1 < ∞,

∫
u2pK(u)du < ∞, and∫

u2pK2(u)du <∞. For some M2 <∞ and M3 <∞, either K(u) = 0 for
|u| > M3 and for any u1, u2 ∈ R, |K(u1)−K(u2)| ≤M2|u1 − u2|, or K(·)
is differentiable, |(∂/∂u)K(u)| ≤M2, and for some ι > 1, |(∂/∂u)K(u)| ≤
M2|u|−ι for |u| > M3.

Assumption 6. h→ 0, (Th)/ lnT →∞ and Th2 → 0, as T →∞.
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Remark 2.1. Assumption 1 is the same as Assumption 1 given in Hansen
(1992) which ensures an invariance principle, (4), (5) and (6) and their joint
convergence to hold (see also Phillips and Durlauf (1986)). Assumption 2
is a strict exogeneity condition which gives ∆13 = 0 and ∆23 = 0, since
∆13 = Σ13 +Γ13 = limT→∞

∑T
t=1E(εtut)+limT→∞

∑t
t=2

∑t−1
j=1E(εtut) =

limT→∞
∑T
t=1E(εtE(ut|Ft−1)) + limT→∞

∑t
t=2

∑t−1
j=1E(εtE(ut|Ft−1)) =

0 by the law of iterated expectations and similarly it holds for ∆23. As-
sumptions 3-6 ensure the uniform convergence results hold as in Hansen
(2008).

3. LOCAL CONSTANT KERNEL ESTIMATION

Similar to Robinson (1988), we propose to use a profile least squares
approach to estimate γ. First we treat γ as if it were known and rewrite
(3) as

Yt −X ′1tγ = X ′2tβ(Zt) + ut. (7)

Then we could estimate β(Zt) by the local constant kernel method, i.e.,

β̃lc(Zt) =

[∑
s

X2sX
′
2sKh,st

]−1 [∑
s

X2s(Ys −X ′1sγ)Kh,st

]
def
= A2t−A1tγ,

(8)
where

A1t = [
∑
s

X2sX
′
2sKh,st]

−1
∑
s

X2sX
′
1sKh,st, (9)

A2t = [
∑
s

X2sX
′
2sKh,st]

−1
∑
s

X2sYsKh,st, (10)

Kh,st = h−1K((Zs−Zt)/h) is the kernel function, and h is the smoothing

parameter. However, it should be mentioned that β̃lc(Zt) defined in (8) is
infeasible as it depends on the unknown parameter γ. We will provide a
feasible estimator for β(Zt) after we get a consistent estimator of γ.

Replacing β(Zt) by β̃lc(Zt) from (8) and re-arranging terms, we obtain

Yt −X ′2tA2t = (X ′1t −X ′2tA1t)γ + ηt, (11)
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where ηt ≡ Yt −X ′2tA2t − (X ′1t −X ′2tA1t)γ. Applying the OLS method to
the above equation leads to

γ̂lc =

[∑
t

(X ′1t −X ′2tA1t)
′(X ′1t −X ′2tA1t)

]−1∑
t

(X ′1t−X ′2tA1t)
′(Yt−X ′2tA2t).

(12)
Hence, we get the local constant kernel estimator for γ. The next theorem

gives the asymptotic distribution of γ̂lc.

Theorem 1. Define Ω1,2(r) = B1(r)′ − B2(r)′B−1(2)B(2,1). Under As-

sumptions 1 to 6, we have

T (γ̂lc − γ)
d→
[∫ 1

0

(Ω1,2)⊗2dr

]−1 ∫ 1

0

Ω′1,2dB3(r),

where B(2) =
∫ 1

0
B2(r)B2(r)′dr, B(2,1) =

∫ 1

0
B2(r)B1(r)′dr, and A⊗2 =

AA′ for any matrix A.

Then a feasible estimator of β(z) is given by

β̂lc(z) =

[
T∑
s=1

Kh,szX2sX
′
2s

]−1 T∑
s=1

Kh,szX2s(Ys −X ′1sγ̂lc), (13)

where Kh,sz = h−1K((Zs− z)/h). The asymptotic distribution of β̂lc(z) is
similar to that is given in Cai et al. (2009) and Li et al. (2014).

4. MONTE CARLO SIMULATIONS

We conduct some Monte Carlo simulation experiments to show the finite
sample performance of our estimator. We consider the following two data
generating processes (DGP):

DGP1 : Yt = X1tγ +X2tβ1(Zt) + ut,

DGP2 : Yt = X1tγ +X2tβ2(Zt) + ut,

where β1(z) = 2 + z3, β2(z) = 1 + sin(6πz), X1t = X1,t−1 + v1t, X2t =
X2,t−1 + v2t, Zt = wt−1 + wt, v1t, v2t and ut are i.i.d. with N(0, 1),
and wt are i.i.d. with uniform[0,1]. We choose the sample sizes as T =
50, 100, 200 and 400, respectively. We compute the square-root of the
average squared error (RASE) for γ and the RASE for β̂i(·) i = 1, 2 as
follows: for each replication we compute RASEγ,j = |γ̂j − γ|, RASEβ,j =
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√
T−1

∑T
t=1[β̂i(Zt)− βi(Zt)]2. Then we obtain the average of RASEγ,j

and RASEβ,j over the 2000 replications.
We use the standard normal kernel, and the smoothing parameters are

first selected by an ad-hoc method: had−hoc = zsdT
−1/α (where we choose

α = 1.8 to satisfy the T consistent condition for γ̂ with the local constant
method, and for the local linear method we use α = 2.8 due to the matrix
singularity problem), where zsd is the sample standard deviation of {Zt}Tt=1.
We also select h by using the least squares cross validation (LS-CV) method

and we denote it by ĥCV . We report simulation results for RASEs for γ̂
and βj (j = 1, 2) in Table 1 and Table 2, respectively.

TABLE 1.

RASE of the estimation of γ

Local constant Local linear

DGP1 DGP2 DGP1 DGP2

n had−hoc hCV had−hoc hCV had−hoc hCV had−hoc hCV

50 0.0762 0.0745 0.1001 0.0910 0.0664 0.0657 0.1685 0.0973

100 0.0358 0.0350 0.0416 0.0397 0.0308 0.0305 0.0810 0.0384

200 0.0183 0.0181 0.0203 0.0197 0.0162 0.0160 0.0335 0.0176

400 0.0095 0.0093 0.0099 0.0098 0.0083 0.0083 0.0131 0.0089

TABLE 2.

RASE of the estimation of β1 and β2

Local constant Local linear

β1 β2 β1 β2

n had−hoc hCV had−hoc hCV had−hoc hCV had−hoc hCV

50 0.1757 0.1630 0.3463 0.3463 0.2262 0.1873 0.6003 0.5686

100 0.0988 0.0940 0.2015 0.1870 0.1020 0.0855 0.4623 0.3333

200 0.0608 0.0567 0.1157 0.1081 0.0518 0.0501 0.3377 0.3025

400 0.0350 0.0324 0.0660 0.0660 0.0280 0.0299 0.2340 0.1535

From the tables we can see that the estimator γ̂ is convergent with T−1

rate, and β̂1(·) and β̂2(·) are consistent estimators. In general, local linear
estimators perform better than local constant estimators. However, when
the local constant estimators are used together with the LS-CV method
for the smoothing parameters selection, the local constant estimators also
perform closely with the local linear estimators. The advantage of the local
constant estimator is that it is easier to compute, and requires less data.
Further, we find that the local linear estimation could suffer severely from
the matrix singularity problem.
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FIG. 1. Plots of the local constant estimation of β1 and β2

APPENDIX A

Lemma 1. Under the Assumptions 1 and 2, we have that

BT (r) =



1√
T

[Tr]∑
t=1

εt

1√
T

[Tr]∑
t=1

vt

1√
T

[Tr]∑
t=1

ut


⇒

B1(r)
B2(r)
B3(r)

 = B(r), (A.1)

where B(r) = (B1(r)′, B2(r)′, B3(r))′ is a Brownian motion with covariance
matrix

Ω =

Ω11 0 0
0 Ω22 0
0 0 σ2

u

 .

Lemma 1 is a standard result which could be found in Phillips and
Durlauf (1986) or Hansen (1992).

First, we strengthen the weak convergence result BT (r) ⇒ B(r) in
Lemma 1 to a strong convergence result. By Skorohod-Dudley-Wichura
representation theorem (e.g., Shorack and Wellner, 1986, Rmk. 2, p. 49),
on an extended probability space, there exists a distributionally equivalent
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sequence B∗T (r) such that


X1t√
T

X2t√
T∑[Tr]

t=1 ut√
T

 =


T−1/2

[Tr]∑
t=1

εt

T−1/2
[Tr]∑
t=1

vt

T−1/2
[Tr]∑
t=1

ut


=d B

∗
T (r)

a.s.→

B1(r)
B2(r)
B3(r)

 (A.2)

where A =d B denotes that A and B follow the same distribution. Since
we are only interested in weak convergence, we will not distinguish two
random elements which have the same distribution.

Let βs denote β(Zs). Substituting Ys by Ys = X ′1sγ +X ′2sβs + us in A2t

of (10) leads to

A2t = A1tγ +A3t +A4t, (A.3)

where

A1t = [
∑
s

X2sX
′
2sKh,st]

−1
∑
s

X2sX
′
1sKh,st,

A3t = [
∑
s

X2sX
′
2sKh,st]

−1
∑
s

X2sX
′
2sβsKh,st,

A4t = [
∑
s

X2sX
′
2sKh,st]

−1
∑
s

X2susKh,st.

Combining (3) and (A.3), we obtain

Yt −X ′2tA2t = (X ′1t −X ′2tA1t)γ +X ′2tβt −X ′2tA3t + ut −X ′2tA4t.

Substituting the above result into (12) gives

γ̂lc − γ =

[∑
t

(X ′1t −X ′2tA1t)
′(X ′1t −X ′2tA1t)

]−1
×
∑
t

(X ′1t −X ′2tA1t)
′ [ut +X ′2t(βt −A3t)−X ′2tA4t] . (A.4)

We give a lemma before we give the proof of Theorem 1.

Lemma 2. Under the Assumptions 1 to 6, we have

(i) B1T
def
= T−2

∑
t(X

′
1t −X ′2tA1t)

′(X ′1t −X ′2tA1t)

⇒
∫ 1

0
[B1(r)′ −B2(r)′B−1(2)B(2,1)]

⊗2dr,
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(ii) B2T
def
= T−1

∑
t(X

′
1t −X ′2tA1t)

′ut

⇒
∫ 1

0
[B1(r)′ −B2(r)′B−1(2)B(2,1)]

′dB3(r),

(iii) B3T
def
= T−1

∑
t(X

′
1t −X ′2tA1t)

′X ′2t(βt −A3t) = op(1),

(iv) B4T
def
= −T−1

∑
t(X

′
1t −X ′2tA1t)

′X ′2tA4t = op(1).
Also, the joint convergence of (i), (ii), (iii) and (iv) hold by the joint

convergence in probability.

Proof of (i): Let Kh,sz = 1
hK

(
Zs−z
h

)
. We have

1

T 2

T∑
s=1

X2sX
′
2sKh,sz =

1

T 2

T∑
s=1

X2sX
′
2sE[Kh,sz]

+
1

T 2

T∑
s=1

X2sX
′
2s[Kh,sz − E[Kh,sz]]

def
= C1T (z) + C2T (z). (A.5)

Following Proposition 1 of Masry (1996), we have that supz∈Sz |E[Kh,sz]−
f(z)| = Op(h

2).

Since 1
T 2

∑T
s=1Xs2X

′
s2 =

∫ 1

0
B2B

′
2dr + op(1), we have

sup
z∈Sz

‖C1T (z)− f(z)

∫ 1

0

B2B
′
2dr‖ = op(1). (A.6)

Following the exact same steps in the proof of Theorem 1 in Gu and
Liang (2014), we have that

sup
z∈Sz

‖C2T (z)‖ = op(1). (A.7)

Further, we have

1

T 2

T∑
s=1

X2sX
′
1sKh,sz =

1

T 2

T∑
s=1

X2sX
′
1sE[Kh,sz]

+
1

T 2

T∑
s=1

X2sX
′
1s[Kh,sz − E[Kh,sz]]

def
= C3T (z) + C4T (z). (A.8)
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Similar as (A.6) and (A.7), we have

sup
z∈Sz

‖C3T (z)− f(z)

∫ 1

0

B2B
′
1dr‖ = op(1), (A.9)

sup
z∈Sz

‖C4T (z)‖ = op(1). (A.10)

Now we consider A1t. By (A.6), (A.7), (A.9) and (A.10), we have

A1t = [T−2
∑
s

X2sX
′
2sKh,st]

−1T−2
∑
s

X2sX
′
1sKh,st

= [C1T (Zt) + C2T (Zt)]
−1

[C3T (Zt) + C4T (Zt)]

=
[
[B(2)f(Zt)]

−1 +Op( sup
z∈Sz

‖C1T (z)− f(z)B(2)‖+ sup
z∈Sz

‖C2T (z)‖)
][
B(2,1)f(Zt)

+Op( sup
z∈Sz

‖C3T (z)− f(z)B(2,1)‖+ sup
z∈Sz

‖C4T (z)‖)
]

= B−1(2)B(2,1) + op(1). (A.11)

Hence,

B1T = T−2
∑
t

(X1t −X ′2tA1t)(X1t −X ′2tA1t)
′

⇒
∫ 1

0

[B1(r)′ −B2(r)′B−1(2)B(2,1)]
⊗2dr.

Proof of (ii): We have

B2T = T−1
∑
t

(X ′1t −X ′2tA1t)
′ut

= T−1
∑
t

[
X ′1t −X ′2tB−1(2)B(2,1)

]′
ut + T−1

∑
t

[
X ′2t(A1t −B−1(2)B(2,1))

]′
ut

def
= C5T + C6T .

It is easy to see that from (6) we have

C5T ⇒
∫ 1

0

[B1(r)′ −B2(r)′B−1(2)B(2,1)]
′dB3(r). (A.12)

Next, we discuss C6T . Let Lt = (A1t−B−1(2)B(2,1))
′X2t/

√
T , then C6T =

T−1/2
∑
t Ltut. Denote LT (r) = L[Tr]/

√
T , then we have that LT (r)

p→ 0
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by (A.2) and (A.10). From Assumption 2, we have that {ut} is a martingale
difference process with respect to the filtration {Ft} and Lt is adapted to
Ft. Following Theorem 2.2 of Kurtz and Protter (1991), we have that

C6T = T−1/2
∑
t Ltut

p→ 0. Therefore, C6T = op(1).
Proof of (iii): We have

B3T = T−1
∑
t

(X′1t −X′2tA1t)
′X′2t(βt −A3t)

= T−1
∑
t

(X1tX
′
2t −A′1tX2tX

′
2t)[T

−2
∑
s

X2sX
′
2sKh,st]

−1T−2
∑
s

X2sX
′
2s(βt − βs)Kh,st

= T−1
∑∑

t 6=s

(X1tX
′
2t −A′1tX2tX

′
2t)[T

−2
∑
l

X2lX
′
2lKh,lt]

−1T−2X2sX
′
2s(βt − βs)Kh,st

= T−1
∑∑

t>s

(X1tX
′
2t −A′1tX2tX

′
2t)[T

−2
∑
l

X2lX
′
2lKh,lt]

−1T−2X2sX
′
2s(βt − βs)Kh,st

+T−1
∑∑

t>s

(X1sX
′
2s −A′1sX2sX

′
2s)[T−2

∑
l

X2lX
′
2lKh,ls]−1T−2X2tX

′
2t(βs − βt)Kh,ts

def
= B3T,1 +B3T,2.

Denote ξs = (f(Zt))
−1β(1)(Zs)

(Zt−Zs)
h Kh,st. Let Gs = σ(εl, vl, 1 ≤ l ≤

T,Zt, t ≤ s) be the smallest sigma-field generated by {εl, vl}, 1 ≤ l ≤ T ,
and Zt, t ≤ s, and denote E(X|Gs) by EsX. Define

ζs =

∞∑
k=0

(Esξs+k − Es−1ξs+k), zs =

∞∑
k=1

Esξs+k.

Then we can see that ζs is a martingale difference sequence with respect
to the filtration Gs and

ξs = ζs + zs−1 − zs, Es−1ζs = 0.
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We have

B3T,1

= T−1
∑∑

t>s

(X1tX
′
2t −A′1tX2tX

′
2t)[T

−2
∑
l

X2lX
′
2lKh,lt]

−1T−2X2sX
′
2s(βt − βs)Kh,st

=
√
Th
∑
s

T−2
∑
t>s

(X1tX
′
2t −A′1tX2tX

′
2t)

X2s√
T

X′2s√
T

[T−2
∑
l

X2lX
′
2lKh,lt]

−1f(Zt)
ξs√
T

+T−1
∑
t

(X1tX
′
2t −A′1tX2tX

′
2t)T

−2
∑
s<t

X2sX
′
2s[T−2

∑
l

X2lX
′
2lKh,lt]

−1[(βt − βs)Kh,st − hf(Zt)ξs]

=
√
Th
∑
s

T−2
∑
t>s

(X1tX
′
2t −A′1tX2tX

′
2t)

X2s√
T

X′2s√
T

[T−2
∑
l

X2lX
′
2lKh,lt]

−1f(Zt)
ζs√
T

+
√
Th
∑
s

T−2
∑
t>s

(X1tX
′
2t −A′1tX2tX

′
2t)

X2s√
T

X′2s√
T

[T−2
∑
l

X2lX
′
2lKh,lt]

−1f(Zt)
zs−1√
T

−
√
Th
∑
s

T−2
∑
t>s

(X1tX
′
2t −A′1tX2tX

′
2t)

X2s√
T

X′2s√
T

[T−2
∑
l

X2lX
′
2lKh,lt]

−1f(Zt)
zs√
T

+T−1
∑
t

(X1tX
′
2t −A′1tX2tX

′
2t)T

−2
∑
s<t

X2sX
′
2s[T−2

∑
l

X2lX
′
2lKh,lt]

−1[(βt − βs)Kh,st − hf(Zt)ξs]

≡ B3T,1,1 +B3T,1,2 +B3T,1,3 +B3T,1,4. (A.13)

Since A1t and [T−2
∑
lX2lX

′
2lKh,lt]

−1f(Zt) are asymptotically adapted
to Gs and

T−2
∑
t>s

(X1tX
′
2t −A′1tX2tX

′
2t)
X2s√
T

X ′2s√
T

[T−2
∑
l

X2lX
′
2lKh,lt]

−1f(Zt)
p→ 0,

following Theorem 2.2 of Kurtz and Protter (1991), we have

∑
s

T−2
∑
t>s

(X1tX
′
2t −A′1tX2tX

′
2t)
X2s√
T

X ′2s√
T

ζs√
T

p→ 0.

Hence, B3T,1,1 = op(
√
Th).

Similar as in the proof of Theorem 3.1 in Hansen (1992), we have

‖zs‖β =

∥∥∥∥∥
∞∑
k=1

Es−1ξs+k

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
k=1

Es−1

(
(f(Zt))

−1β(1)(Zt)O(h)
)∥∥∥∥∥

≤ O(h)

∞∑
k=1

6α
1/β−1/p
k ‖(f(Zt))

−1β(1)(Zt)‖p ≤ 6Ch

∞∑
k=1

α
1/β−1/p
k = O(h),

uniformly in s. Also, we have

∑
s

T−2
∑
t>s

∥∥∥∥∥(X1tX
′
2t −A′1tX2tX

′
2t)
X2s√
T

X ′2s√
T

[T−2
∑
l

X2lX
′
2lKh,lt]

−1f(Zt)

∥∥∥∥∥ = Op(T ),
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and sups,t ‖(βt−βs)Kh,st−hf(Zt)ξs‖ = Op(h
2). Thus, B3T,1,2 = Op(Th

2),
B3T,1,3 = Op(Th

2), and B3T,1,4 = Op(Th
2). Therefore,

B3T,1 = op(
√
Th) +Op(Th

2) = op(1).

Similarly, we can show that B3T,2 = op(
√
Th) +Op(Th

2) = op(1).

Proof of (iv): Since

B4T = −T−1
∑
t

(X1t −X ′2tA1t)
′X ′2tA4t = T−1

∑
t

(A′1tX2tX
′
2t −X ′1tX ′2t)A4t

= T−1
∑
t

(A′1tX2tX
′
2t −X ′1tX ′2t)C1T (Zt)

−1T−2
∑
s

X2susKh,st + op(1),

we can write B4T = B4T,1 +B4T,2 + op(1), where

B4T,1 = T−3
∑
t

(A′1tX2tX
′
2t −X ′1tX ′2t)C1T (Zt)

−1X2tutK(0),

B4T,2 = T−3
∑
t

∑
s6=t

(A′1tX2tX
′
2t −X ′1tX ′2t)C1T (Zt)

−1X2susKh,st.

It is easy to see that E(B4T,1) = 0 and E(B2
4T,1) = T−2. Hence, B4T,1 =

Op(T
−1) = op(1).

We can write B4T,2 as

B4T,2 = T−3
T (T − 1)

2

1

T (T − 1)

∑
t

∑
s 6=t

H4T,ts = T−3
T (T − 1)

2
U4T ,

where H4T,ts = [(A′1tX2tX
′
2t − X ′1tX ′2t)C1T (Zt)

−1X2sus + (A′1sX2sX
′
2s −

X ′1sX
′
2s)C1T (Zs)

−1X2tut]Kh,st. Then, U4T is a second order U-statistic.
Hence, we use a conditional Hoeffding decomposition as

U4T = E[H4T,ts] +
2

T (T − 1)

T∑
t=1

∑
s6=t

[H4T,t − E(H4T,t)]

+
2

T (T − 1)

T∑
t=1

T∑
s>t

[H4T,ts −H4T,t −H4T,s + E(H4T,ts)] ,

where H4T,t = E[H4T,ts|wt], wt = (F∞, Zt, ut).
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From Assumption 2, we have E[H4T,ij ] = 0. Also, we have that

2

T (T − 1)

T∑
t=1

∑
s 6=t

[H4T,t − E(H4T,t)]

=
2

T (T − 1)

T∑
t=1

∑
s 6=t

E[(A′1sX2sX
′
2s −X′1sX′2s)C1T (Zs)−1X2tutKh,st|wt]

= T
2
√
T

T∑
t=1

[
1

T

T∑
s=1

(
(B−1

(2)
B(2,1))

′X2s√
T

X′2s√
T
−
X′1s√
T

X′2s√
T

)
f(Zt)

−1B−1
(2)
f(Zt)

]
X2t√
T
ut + op(T )

=

[
1

T

T∑
s=1

(
(B−1

(2)
B(2,1))

′X2s√
T

X′2s√
T
−
X′1s√
T

X′2s√
T

)
B−1

(2)

]
T

2
√
T

T∑
t=1

X2t√
T
ut + op(T )

= op(T ),

since

1

T

T∑
s=1

(
(B−1(2)B(2,1))

′X2s√
T

X ′2s√
T
− X ′1s√

T

X ′2s√
T

)
B−1(2)

p→
(
B′(2,1)B

−1
(2)

∫ 1

0

B2B
′
2dr −

∫ 1

0

B′1B
′
2dr

)
B−1(2)

p→ 0,

and V ar[ 2√
T

∑T
t=1

X2t√
T
ut] = O(1).

Moreover, we have

V ar

[
2

T (T − 1)

T∑
t=1

T∑
s>t

[
H4T,ts −H4T,t −H4T,s + E(H4T,ts)

]]

= T 3 2

T 2(T − 1)2

T∑
t=1

T∑
s>t

E
[
T−3/2H4T,ts − T−3/2H4T,t − T−3/2H4T,s + T−3/2E(H4T,ts)

]2
= O(T−1).

Therefore, we have that U4T = op(T )+Op(T
−1/2) andB4T,2 = T−3 T (T−1)

2 U4T =
op(1). Further, B4T = op(1).
Proof of Theorem 1: From (A.3) and Lemma 2, we obtain that

T (γ̂lc − γ)

= B−1
1T [B2T +B3T +B4T ]

=

(∫ 1

0
[B1(r)′ −B2(r)′B−1

(2)
B(2,1)]

⊗2dr

)−1

[

∫ 1

0
[B1(r)′ −B2(r)′B−1

(2)
B(2,1)]

′dB3(r) + op(1)]

⇒
(∫ 1

0
[B1(r)′ −B2(r)′B−1

(2)
B(2,1)]

⊗2dr

)−1 ∫ 1

0
[B1(r)′ −B2(r)′B−1

(2)
B(2,1)]

′dB3(r). (A.14)

This completes the proof.
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