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A Critique of the Stochastic Discount 
Factor Methodology 

RAYMOND KAN and GUOFU ZHOU* 

ABSTRACT 

In this paper, we point out that the widely used stochastic discount factor (SDF) 

methodology ignores a fully specified model for asset returns. As a result, it suffers 

from two potential problems when asset returns follow a linear factor model. The 

first problem is that the risk premium estimate from the SDF methodology is 

unreliable. The second problem is that the specification test under the SDF meth­

odology has very low power in detecting misspecified models. Traditional method­

ologies typically incorporate a fully specified model for asset returns, and they can 

perform substantially better than the SDF methodology. 

AssET PRICING THEORIES, such as those of Sharpe (1964), Lintner (1965), Black 
(1972), Merton (1973),  Ross (1976) ,  and Breeden (1979) , show that the ex­
pected return on a financial asset is a linear function of its covariances (or 
betas) with some systematic risk factors . This implication has been tested 
extensively in the finance literature by the so-called "traditional methodol­
ogies." In the traditional methodologies,  a data-generating process is first 
proposed for the returns, and then the restrictions imposed by an asset pric­
ing model are tested as parametric constraints on the return-generating pro­
cess . The approach taken by the traditional methodologies has a potential 
problem, which is that when the proposed return-generating process is mis­
specified the test results could be misleading. Therefore, in applying the 
traditional methodologies, researchers typically have to justify that the pro­
posed data-generating process provides a good description of the returns . 
For example, when the proposed return-generating process is a factor model, 
one would like the model to have high R2 in explaining the returns on the 
test assets , especially when the test assets are well-diversified portfolios. 

As many of the earlier theories are special cases of the stochastic dis­
count factor (SDF) model, recent empirical asset pricing studies have been 
focused on testing the pricing restrictions in terms of the SDF model, rather 
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than on the traditional risk measures such as the beta and the Sharpe 
ratio. One of the most prominent papers in this line of research is Co­
chrane (1996) ,  where the SDF methodology is fully explained. The formu­
lation typically estimates the parameters and tests the pricing implications 
without a fully specified model of how the asset retums are generated in 
the economy. On the one hand, this appears very general and requires 
fewer assumptions and parameters than the traditional methodologies . On 
the other hand, it seems counterintuitive that one can be sure the pricing 
restrictions are true even if one knows little about the dynamics of the 
returns-that is, without a fully specified model (either parametric or non­
parametric) of the returns. 

This paper shows that if asset returns are generated by a linear factor 
model, then by ignoring the full dynamics of asset returns , as is currently 
done in empirical studies using the SDF methodology, two potential prob­
lems arise.  The first problem is that the accuracy of the parameter estima­
tion can be poor: the standard error of the estimated risk premium is often 
more than 40 times greater than that of the traditional methodologies, which 
should make one extra cautious when applying the SDF methodology. The 
second problem with the SDF methodology is that its specification test has 
very low power against misspecified models . With the usual sample size that 
we encounter in empirical studies ,  our simulation evidence suggests that the 
SDF methodology is not very reliable in detecting even gross misspecifica­
tions in an asset pricing model, especially when the proposed factors are not 
highly correlated with the retums. 

The rest of the paper is organized as follows .  The next section presents the 
traditional beta pricing model and the SDF model , and the empirical meth­
odologies that are typically used to estimate and test such models. Though 
these are standard in the literature, the purpose here is to introduce nota­
tions and to facilitate later discussions . We also provide the intuition why 
the SDF methodology may not perform well when there is a lack of a fully 
specified model for the asset returns . In Sections II and III, we use asymp­
totic theory and Monte Carlo simulations to compare the performance of the 
traditional and SDF methodologies. The conclusions are in the final section. 

I. Traditional and SDF Methodologies 

A. Tests of the Traditional Beta Pricing Model 

In order to make the results more easily understood, we present them in 
the simplest form. Let rt be the excess retum (in excess of the risk-free rate) 
on N risky assets at timet. Traditional methodologies begin by proposing a 
retum-generating process for the excess returns, typically one that provides 
good explanatory power on the excess returns. For example, one may pro­
pose that excess retums are generated by a one-factor model 

rt = a + f:Jft + Bt' (1) 
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where ft is the realized value of a systematic risk factor at time t, Bt is the 
idiosyncratic risk of the assets with E[etlfncl»t-d = ON and Var[ s t] = I, 
where ON is anN-vector of zeros, cl»t_1 is the information set at t - 1, and fJ = 

Cov[rn ftlcl»t_ t J/Var[ ftlcl»t_1] is the factor loadings of the returns with re­
spect to the common factor. Since only unexpected shocks matter for un­
expected returns, ft can be modeled as a martingale difference sequence; 
that is,  E[ftl4»t_1] = 0. Under these assumptions, a =  E[rtlcl»t-d is the 
expected excess returns on the N assets . In the rest of the paper, the trivial 
case a =  ON is precluded. In general, a and fJ can be functions of information 
variables at t - 1, but for the purpose of simplifYing technical details and 
focusing on the main point of this paper, we assume they are constants . 
Nevertheless, we do not assume Var[ s t I cl»t_1 , ft] = I, so conditional hetero­
skedasticity in Bt is allowed in our setup. 

A beta pricing model, in the exact form, suggests that the expected excess 
return of an asset is a linear function of its betas with respect to the sys­
tematic factors . In our one-factor case, the beta pricing model suggests 

a =  fJA, (2) 

where A is the risk premium. This clearly imposes a testable restriction on 
the parameters of the return-generating process in equation (1) . Traditional 
tests of beta pricing model are basically done by carrying out various sta­
tistical tests of this restriction. 

There are many alternatives to estimate the risk premium A and test the beta 
pricing model. We describe two representative approaches here . If one is will­
ing to make distributional assumptions on Bt, one can use the maximum like­
lihood approach. A popular choice is to assume conditional onft, Bt � N(ON,I).  
Following Zhou (1991, 1995) ,  we define f = [{1, {2, ... ,fT]', X = [IT,f], 
Y= [r1 , r2 , ... ,rT]', where T is the number of time series observations, and IT 
is aT-vector of ones. Let �1::::: �2 > 0 be the two eigenvalues of 

A = (X'X)-1(X'Y)(Y'Y)-1(Y'X). (3) 

Under the normality assumption, the maximum likelihood estimator of A is 
given by 

(4) 

where a;i are the (i,j) th elements of A. The likelihood ratio test (with the 
Bartlett correction) of equation (2) is1 

( N + 3 ) A LRT = - T- -
2
- log (1- �2) � x�-1, 

where � means an asymptotic distribution. 

(5) 

1 Based on simulation evidence, Zhou (1995) shows that the Bartlett correction can improve 

the small sample properties of the likelihood ratio test. The exact small sample distribution of 

the likelihood ratio test is also available from Zhou (1991, 1995). 
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If one does not wish to make any strong distributional assumptions on et , 
then an alternative approach is to use the generalized method of moments 
(GMM) of Hansen (1982) to estimate the parameters and test the beta pric­
ing model . Following, for example ,  MacKinlay and Richardson (1991) or Har­
vey and Zhou ( 1993) , the GMM test of equation (2) uses the following moment 
conditions : 

To apply the GMM methodology, we define the sample moments as 

(8) 

where Zt  = [ 1.ft ] ' . We assume ft and Bt are jointly stationary and ergodic 
with finite fourth moments, and under the true parameters , 

(9) 

where S1 is a 2N X 2N positive definite constant matrix. This condition is 
much weaker than those assumed in other methods of testing asset pricing 
models. It allows for a variety of forms of autocorrelation and heteroske­
dasticity in zt ® Bt . In the GMM methodology, the estimators of the true 
parameters A and fJ of the one-factor model, A* and /J*, are given by the 
solution of the following minimization problem, 

( 10) 

where W1r is a (possibly stochastic) 2N X 2N positive definite weighting 
matrix with a limit W that is positive definite and nonstochastic . The stan­
dard approach is to choose an optimal weighting matrix equal to a consistent 
estimate of 811•2 Although there are N + 1 parameters in the beta pricing 
model and the optimization problem is a nonlinear one, it does not present 
as a serious problem to the estimation because, conditional on a given value 
of A, the objective function is linear in fJ and the minimization problem can 

2 
When the optimal weighting matrix depends on parameters, an iterative method has to be 

used. In the first round, a positive definite matrix, say, the identity matrix, is used as the 

weighting matrix to estimate the parameters. In the second round, the model is reestimated 

using the optimal weighting matrix based on the estimated parameters from the first round. 
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be solved analytically. As a result, the estimation problem can be written as 
a function of..\ alone and a simple line search can be used to find the optimal 
.A· .a 

A test of the traditional beta pricing model a = fJ..\ can be carried out by 
using Hansen's (1982) overidentification test. Since we have 2N moment 
conditions and only N + 1 parameters , there are N - 1 overidentification 
conditions, and hence 

(11) 

where W1r is a consistent estimate of the optimal weighting matrix.4 How­
ever, as Cochrane (1996) and Jagannathan and Wang (1996) suggest, it is 
sometimes desirable, for good economic reasons, to use a nonoptimal weight­
ing matrix. In this case, J1 will no longer have a simple chi-square distri­
bution, but rather will be a weighted sum of chi-square distributions. Zhou 
(1994) provides a simple chi-square GMM test for an arbitrary weighting 
matrix, which can be used to bypass the difficulty of having to calculate a 
weighted sum of chi-square distributions. A numerically identical test is also 
proposed by Cochrane (1996) . But an alternative optimal chi-square test can 
be obtained from the scoring algorithm, as presented by Newey (1985) and 
analyzed by Zhou (1994) .  

B. SDF Model 

As discussed by Cochrane (1996) , the beta pricing model is a special case 
of the SDF model. Under the SDF model, there exists a random variable mt, 

the stochastic discount factor, such that 

(12) 

When the exact one-factor asset pricing model in equation (2) holds, the 
stochastic discount factor is given by 

(13) 

for some constants 80 and (\. As an econometric model, the parameters in 
equation (13) are not uniquely defined. If (80,81) satisfies the equation, so 
does any multiplier of it. Therefore, it is common to normalize the param­
eters by writing 

(14) 

3 Details of the optimization are available upon request. For some special weighting matri­

ces, Zhou (1994) even obtains an analytical solution to this optimization problem. 

4 Another way of testing a = fJJo. is to estimate a and fJ in equations (6) and (7) as a fully 

specified model and test the nonlinear restriction on the parameters using a Wald test. 
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where A = 81 /80. If Var[ ft] = 1, then fJ = E [rt ft]  and the A in equation (14) 
is exactly the same as the A in equation (2). For ease of comparison, we 
assume Var[ ft ] = 1 in the following discussion.5 

Intuitively, equation (14) only relates mt to the asset returns in terms of 
covariances, not how they impact on each other. In theory, equation (14) is 
well established; there are no problems with the asset pricing restrictions at 
all. It is the empirical studies of equation (14) that give rise to the potential 
problems pointed out earlier. Current empirical studies in testing the SDF 
model typically focus on testing equation (14) alone without specifying the 
data-generating process in equation (1) that rt follows. We argue in this 
paper that such a practice leads to serious problems . 

Before we move on to discuss the estimation and test methodology of the 
SDF model, we point out that although equation (14) holds when we have 
the true systematic factor ft ,  there are other factors that also allow equation 
(14) to hold exactly. We consider two classes of factors that have this property. 

1. Noisy factor. Suppose we define 

(15) 

where nt is a pure measurement error with mean zero and finite vari­
ance a; and it is uncorrelated with ft and et .6 By specifying gt as the 
factor in the SDF model, then for 

(16) 

we have 

(17) 

Therefore, the noisy factor gt does the same job as the true factor ft in 
pricing the assets . That pure measurement error does not affect the 
linear pricing relation is well known in the literature. It is discussed, 
for example,  in Breeden, Gibbons ,  and Litzenberger (1989) , and Co-

5 In practice, standardizing macroeconomic factors is a nontrivial issue. The correct ap­

proach is to explicitly model their conditional distribution as in Cochrane (1996) and He et al. 

(1996), and include their estimation as part of the moment conditions. We ignore this issue here 

in order not to distract from the discussion of the main issue. 
6 The limiting case of u; � oo (i.e., g, = n,lun ) is the case that g, is a useless factor, which 

is studied by Kan and Zhang (1999a, 1999b). 
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chrane (1996) . Although the linear pricing relation is retained, the risk 
premium for the noisy factor is higher than that for the true factor. In 
fact, from equation (16) , we can see that the noisier the factor, the 
higher is its risk premium. One may like to think that when u; is 
large, the SDF model that uses the noisy factor is more likely to be 
rejected in finite samples than the one with the true factor. We will 
show with simulation that this view cannot be justified. 

2. Unsystematic factor. We define 

(18) 

and ht is a linear combination of Bt. Therefore, ht has mean zero and it 
is uncorrelated with ft .  By specifying ht as the factor in the SDF model, 
then for 

(19) 

we have 

= a - fJA. = ON, (20) 

and ht prices the N assets perfectly. Although ht is an unsystematic 
factor by construction, we will still be tempted to conclude that it is 
"priced." 

The fact that these two classes of "wrong" factors can satisfy equation (14) 
suggests the danger of attaching economic meaning to the test outcome of an 
SDF model . When one specifies a set of macroeconomic factors and finds 
that it satisfies equation (14),  one really cannot tell whether it is the true 
factor ft ,  the noisy factor gt, or if it is just an unsystematic factor ht . It 
should be pointed out that if gt or ht is proposed as the factor in the data­
generating process, it is also difficult for the traditional methodologies to 
detect these "wrong" factors. However, because gt and ht typically do not 
possess good explanatory power on the returns of the test assets (especially 
when u; is large and the test assets are well-diversified portfolios) ,  they are 
less likely to be included as the systematic factors under the traditional 
methodologies . In contrast, the SDF methodology does not pay any attention 
to the return-generating process ,  hence gt and ht could easily be proposed 
and be mistaken as the "true" systematic factors . 
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Recognizing that there are countless SDFs that represent countless asset 
pricing models for a given set of asset returns , Hansen and Jagannathan 
(1991) solve explicitly the SDF that has the minimum variance among all 
the SDFs. Hansen and Jagannathan (1997) further show how to use SDFs to 
assess specification errors of asset pricing models. What we have shown 
here is that there are in fact many SDFs for a given linear factor model. 
Therefore , explicitly constructed "wrong" factors can potentially help to ex­
plain the failure of an asset pricing model. This highlights the danger of 
using factors in the SDF framework without a careful examination of the 
explanatory power of the factors. 

C. GMM Estimation and Test of SDF Models 

In estimating parameters and testing pricing restrictions of equation (14), 
the GMM is used almost exclusively. For illustrative purposes, we assume, as 
we did earlier for the traditional methodologies,  that the model is estimated 
and tested without using the information/instrumental variables at t - 1. The 
test of this simple form amounts to the so-called "unconditional test of the un­
conditional model" defined in Cochrane (1996). Let ut = rt(1- ft A) andg2r = 

(1/T)2}�1 Ut. We assume under the true parameter that 

(21) 

for some positive definite constant matrix 82. The true parameter A is esti­
mated by 

(22) 

where W2r is typically a consistent estimate of 8:;:1• The GMM estimation of 
the SDF model is very simple to implement because there is only one pa­
rameter, A, to be estimated, and it can be analytically obtained as 

(23) 

where D2r = (1/T)"'i.[�trdt and i'r = (l!T)'i.'{�lrt. 
A test of the SDF model in equation (14) is usually carried out by using 

Hansen's (1982) overidentification test. Since we have N moment conditions 
and only one parameter, there are N - 1 overidentification conditions ; hence 

(24) 

when W2r is a consistent estimate of the optimal weighting matrix 821• 
Therefore, if the beta pricing model is correct, both J1 in equation (11) and 

J2 have an asymptotic chi-square distribution and there are no strong rea­
sons to prefer one test over the other. However, in finite samples , their per-
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formance could differ. More importantly, when the model is misspecified, J1 
and J2 could have very different power. We study these issues by simulation 
in Section III. 

Although the estimation problem of the SDF methodology is very simple, 
ignoring the full dynamics of asset returns introduces serious problems . In­
tuitively, equation (14) is a restriction on part of the first and second mo­
ments between the asset returns and the factor. Testing equation (14) alone 
without using a fully specified model amounts to ignoring many other first 
and second moments entirely. As a result, it is not surprising that the esti­
mation error of A can be substantially large . It is also not surprising that a 
tested factor can be important in equation (14) , but in fact may have little to 
do with the returns. This is the fundamental reason that causes the prob­
lems emphasized by this paper. In the following sections, we provide a com­
parison of the traditional methodologies with the SDF methodology in terms 
of the estimation accuracy of risk premium, and in terms of the size and the 
power of their tests of the asset pricing model . 

II. Estimation Accuracy of Risk Premium 

In this section, we demonstrate in two ways that there can be substantial 
loss of efficiency in estimating A by using the SDF methodology. First, we 
provide theoretical results to show that the asymptotic variance of the esti­
mated A in the SDF methodology is greater than the variances of the tra­
ditional methodologies. Second, we provide Monte Carlo simulations to further 
illustrate that the standard error of the estimated A in the SDF methodology 
is indeed very large (in small samples) , and may not be reliable in applica­
tions . In contrast, the estimated A for the traditional methodologies is very 
accurate even in small samples , making it better suited for estimating risk 
premia. 

The consistency of AML• A* ,  and A is well known; that is, as sample size T 
increases,  they all approach the true parameter A. At a given finite sample 
size T, however, there will be an estimation error. In assessing the accuracy 
of A in the SDF methodology with that of AML and A* in the traditional 
methodologies , we can compare their asymptotic variances. The following 
proposition shows that A* is asymptotically more accurate than A and it has 
the same efficiency as AML under the normality assumption.7 

PROPOSITION 1: Suppose ft is the true factor and it has a continuous distribu­
tion. We have 

Avar[ A* ] < Avar[ A] .  (25) 

7 Proposition 1 can be extended to the multifactor case to show that the vector of estimated 

risk premium is more accurate under the traditional methodologies than the SDF methodology. 

Results are available upon request. 
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For the case that Bt has a multivariate normal distribution conditional on ft, 
we have 

(26) 

Proposition 1 suggests that regardless of the distribution that Bt follows, 
with or without conditional heteroskedasticity, traditional methodologies that 
incorporate the return-generating process will always provide an estimated 
risk premium that is asymptotically more efficient than that from the SDF 
methodology. One may like to think that the reason we achieve higher ac­
curacy in A* is that we use more moment conditions than the SDF method­
ology. However, this is not the main reason for the improvement because, 
although we do have more moment conditions in the traditional methodol­
ogy, we also have more parameters to estimate. 

There are two main reasons why the full GMM estimator A* in the tradi­
tional methodology is more efficient than the SDF estimator A. The first 
reason is that the full GMM uses jj* to explain average excess returns, whereas 
the SDF methodology uses D2r = (1/T)2.[=1rtft to explain average excess 
returns. Both /J* and D2r are consistent estimates of 13 when Var[ ft] = 1; 
however, in general, /J* is a more accurate estimator of 13 than D2r . For 
example, under the multivariate normality assumption on ft and Bt, it can be 
shown that Avar[D2r] = I+ 1313' ,  which is much larger than 

A
* 

1 [ A21313' ] 
Avar[ l3  ] = --2 I + ,� 1 < I.8 

1+A 13�-13 

In the traditional methodology, the moment conditions in equation (7) and 
the restriction a = I3A allow us to obtain an estimate of 13 with high degree 
of accuracy. In contrast, the SDF methodology abandons the more accurate 
beta estimation and only relates the average returns to the average 
covariances. 

The second reason the full GMM estimator A* in the traditional method­
ology is more efficient than the SDF estimator A is that the realized return 
is a very noisy measure of expected return. The traditional methodology 
makes use of the factor structure of the return-generating process by taking 
away the systematic component 13ft from rt in the moment conditions . When 
13ft accounts for a significant portion of the variations of rt, then rt - 13ft is 

8 The expression for AvarUJ*] can be obtained from the proof of Proposition 1. The inequality 
follows because 

1 [ A2fJfJ' ] A2 
__ I+ __ = I ___ I1;2[I _ I-112fJ(fJ'I-1fJ)-1fJ'I-112]Ill2 
1 + A2 fJ'I-1/J 1 + A2 N 

and the second term is a positive semidefinite matrix. 
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a much less noisy measure of expected return than rt. The SDF methodol­
ogy, however, does not incorporate the return-generating process in its mo­
ment conditions and only relates realized excess returns rt to realized 
covariance rtf t. When both of these two measures are very noisy, it is not 
surprising that the SDF methodology does not deliver a very accurate esti­
mate of the risk premium. 

The above analysis shows that the traditional methodology, which utilizes 
the fully specified asset return model, helps to substantially improve the 
estimation accuracy of A. As a result, it may be tempting to. estimate A by 
using all of the moment conditions ,  those of the traditional ones in equations 
(6) and (7) , and those of the SDF ones in equation ( 14) . It turns out that 
there is some overlap between these moment conditions. Out of the 3N mo­
ment conditions ,  N - 1 of them are redundant. For example , if we know Bt, 

stft , and u lt = rlt( 1 - ft A) where /31 i= 0, then we can obtain the other 
elements of ut by using the relation 

/3i 
= [rit - /3i (A  + ft )] ( 1 - ft A) + - f3t(A + ft ) (1 - ft A) 

f3t 
= rit( 1 - ft A) 

= uit , for i = 2 ,  . . .  ,N. (2 7) 

Therefore, one can use at most 2N + 1 moment conditions to estimate A. 
Denote A** and fJ** as the estimator of A and fJ using any 2N + 1 of the 
combined 3N moment conditions. The following proposition suggests that 
once the moment conditions in the traditional methodology are used, the 
additional one from the SDF model does not help to improve the accuracy of 
the estimation. 

PROPOSITION 2: Suppose ft is the true factor. We have 

[ A* ] [ A** ] 
Avar 

A 
= Avar 

A 
• 

fJ* fJ** 
(28) 

Note that Proposition 2 does not suggest that any 2N out of the combined 
3N moment conditions will do the same job as the traditional methodology. 
For example ,  if we combine the N moment conditions in equation (6) (or the 
N moment conditions in equation (7)) with theN moment conditions in equa­
tion ( 14) of the SDF methodology to estimate A, it can be shown that the 
asymptotic variance of the estimated A using these 2N moment conditions is 
still the same as that of A from the SDF methodology. Therefore , it is im­
portant to choose the proper set of moment conditions to obtain a good es­
timate of A.  Proposition 2 suggests the moment conditions used by the 
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traditional methodology are the best and they are sufficient to learn almost 
everything about the parameters . Adding the SDF moment conditions into 
the traditional ones provides only redundant information.9 

Although Proposition 1 suggests that the estimated risk premium in the 
traditional methodologies is asymptotically more accurate than that of the 
SDF methodology, it does not tell us the magnitude of improvement, nor 
does it tell us whether this result holds in finite samples . We address these 
issues by simulation. The setup of our simulation experiment is as follows. 
In our simulation, we generate excess returns on 10 assets using a one­
factor model. The factor is generated independently from a standard normal 
distribution and it is designed to capture the behavior of the standardized 
excess return on the value-weighted market portfolio of the NYSE; that is, 

r - E [r ] 
ft = mt mt 

� N(0,1), (29) 
O"

m 

where r mt is the excess return on the market portfolio and O"m is its standard 
deviation. The betas of the 10 assets are set to equal the sample betas of the 
10 size-ranked portfolios of the NYSE with respect to ft, estimated using 
monthly returns from January 1926 to December 1997.  The true risk pre­
mium is chosen to make the expected excess returns close to the average 
excess returns of the 10 size portfolios over the sample period; that is, 

A =  argmin .. (i• - /3A) ' (r - /3A) , (30) 

where r and f3 are the average returns and sample betas of the 10 size­
ranked portfolios. Finally, the model disturbances are independently gener­
ated from a multivariate normal distribution 

(31) 

where I is chosen to be the sample covariance matrix of the market model 
residuals of the 10 size-ranked portfolios .  In Table I, Panel A, we present the 
parameters a, /3, and A of the 10 assets we use in our simulation. Note that 
the value we choose for A (0.1373) is very close to the sample Sharpe ratio 
for the value-weighted market portfolio of the NYSE, which is equal to 0.1248 
for the period January 1926 to December 1997.10 

We generate returns from this one-factor model for different lengths of 
time series and apply the traditional and the SDF methodologies to estimate 
the risk premium A. In Panel B of Table I, we present a summary of the 

9 Similar to Proposition 1, Proposition 2 continues to hold for the multifactor case. When 
there are k-factors, only k of the SDF moment conditions can be added to the traditional mo­
ment conditions, and they do not improve the estimation accuracy of the risk premium and the 
betas. Results are available upon request. 

10 Under our definition of{,, A is equal to the Sharpe ratio of the market portfolio if the 
CAPM holds. 
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estimation results in 10,000 simulations . For the traditional methodologies ,  
we report the average and standard deviation of the estimated risk premium 
using the maximum likelihood approach and the GMM approach.U Both the 
maximum likelihood approach and the GMM approach that uses the tradi­
tional moment conditions produce very reliable estimates of risk premium. 
Their estimated risk premia are almost unbiased and they are tightly dis­
tributed around the true A. Although Proposition 1 suggests that under nor­
mality assumption on Bt, we have Avar[ 1ML] = Avar[ 1* ] ,  the maximum 
likelihood estimator is better behaved than the full GMM estimator when 
the sample size T is small . 

The last two columns of Panel B report the average and standard deviation 
of 1, the estimated risk premium from the SDF methodology. The difference 
between the performance of the estimation risk premium in the SDF and the 
traditional methodologies is striking. The estimated risk premium using the 
SDF methodology is biased and volatile . For example ,  when T = 120, the av­
erage 1 in our 10,000 simulations is 0.1497, quite far from the true value of A = 

0.1373.  Furthermore, the standard deviation of 1 is 0.1049, so the estimated 
risk premium from the SDF methodology could easily be negative. Although 
the bias and the standard deviation of 1 reduce as T increases , 1 is still vol­
atile forT as large as 720. On average, the standard deviation of the estimated 
risk premium under the SDF methodology is more than 40 times larger than 
that of the traditional methodologies.  Therefore, for the purpose of estimating 
risk premium, the traditional methodologies are much better suited for the job 
than the SDF methodology. 

Before we move on to discuss the size and power of the tests in the tradi­
tional and the SDF methodologies ,  we should note that the excess returns in 
our simulation experiment for Panel B are generated in a way that is most fa­
vorable to the maximum likelihood approach. When Bt is not normally distrib­
uted or its distribution is unknown, the maximum likelihood approach is difficult 
to apply. However, the results based on the GMM approach remain fairly ro­
bust to the distributional assumption on Bt. So the advantage of using the tra­
ditional moment conditions over the SDF moment conditions is still important, 
even when Bt is not normally distributed. To illustrate this,  we generate ft and 
Bt from a multivariate t-distribution with v degrees offreedom and mean zero. 
The covariance matrix of ft and Bt stays the same as in the multivariate nor­
mal case (i .e . ,  Var[ ft] = 1, Var [st] = I) , and they are uncorrelated with each 
other. The reason we choose the multivariate t-distribution is that it offers an 
opportunity for us to investigate the effect of conditional heteroskedasticity on 
our results. When ft and Bt have a multivariate t-distribution, the conditional 
variance of st depends on ft. More specifically, when v > 2 ,  we have 

( v - 2 + ft2 ) 
Var[stlftJ = I 

v - 1  
(32)  

11 The GMM estimation results are based on the second stage GMM with the identity matrix 
as the initial weighting matrix. Simulation results of the third and fourth stage GMM are mostly 
similar to the ones using the second stage GMM, therefore they are not separately reported. 
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Table I 
Estimation Accuracy of Risk Premium under the Traditional 

Methodologies and the Stochastic Discount Factor Methodology 
The table presents the performance of the estimated risk premium under traditional method­
ologies and the stochastic discount factor (SDF) methodology. Excess returns on 10 assets are 
simulated using a one-factor model 

r, = a + {Jf, + s,, 

where the values of a = {JA (in percentage per month) and fJ are presented in Panel A. The 
parameters are chosen to mimic the returns on 10 size-ranked portfolios of the NYSE. The 
factor and the model disturbance are generated as{,- N(0,1) and s,- N(ON,'i.), where!, is set 
to equal the sample covariance matrix of the market model residuals of the 10 size-ranked 
portfolios of the NYSE, estimated using monthly returns over the period January 1926 to De­
cember 1997. The estimation results of 10,000 simulations are reported in Panel B. For each 
length of time-series observations, T, we present the average and standard deviation of the 
estimated risk premium from the maximum likelihood method and the (second stage) GMM 
method using the traditional moment conditions and the SDF moment conditions. Panel C 
reports the same results as in Panel B but for the cases that (f,,s,) are generated from a 
multivariate t-distribution with 5 and 10 degrees of freedom. 

Panel A: Parameters of the One-Factor Pricing Model 

Size-Ranked Portfolios 

1 2 3 4 5 6 7 8 9 10 
a 1.129 1.070 0.993 0.954 0.923 0.911 0.875 0.833 0.810 0.709 
fJ 0.082 O.o78 0.072 0.069 0.067 0.066 0.064 0.061 0.059 0.052 

A = 0.1373 

Panel B: Distribution of Estimated Risk Premium under Multivariate Normality Assumption 

Traditional Methodologies 

Maximum SDF 

Likelihood (iML) GMM (A*) Methodology (A) 
Standard Standard Standard 

T Average Deviation Average Deviation Average Deviation 

120 0.1374 0.0020 0.1375 0.0045 0.1497 0.1049 
240 0.1373 0.0014 0.1374 0.0020 0.1438 0.0689 
360 0.1373 0.0011 0.1373 0.0014 0.1417 0.0553 
480 0.1373 0.0010 0.1373 0.0011 0.1404 0.0477 
600 0.1373 0.0009 0.1373 0.0009 0.1399 0.0426 
720 0.1373 0.0008 0.1373 0.0008 0.1396 0.0386 

Panel C: Distribution of Estimated Risk Premium under Multivariate t-distribution Assumption 

Traditional SDF 

Methodology (i *) Methodology (A) 
Standard Standard 

T Average Deviation Average Deviation 

5 degrees 

of freedom 

120 0.1374 0.0046 0.1611 0.1162 
240 0.1374 0.0020 0.1513 0.0764 
360 0.1374 0.0014 0.1480 0.0612 
480 0.1374 0.0011 0.1456 0.0513 
600 0.1374 0.0009 0.1440 0.0454 
720 0.1373 0.0008 0.1432 0.0411 



T 
10 degrees 

of freedom 

120 
240 
360 
480 
600 
720 
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Table !-Continued 

Traditional SDF 

Methodology (A*) Methodology (A) 
Standard Standard 

Average Deviation Average Deviation 

0.1374 0.0045 0.1511 0.1088 
0.1373 0.0020 0.1448 0.0713 
0.1373 0.0014 0.1422 0.0567 
0.1373 0.0011 0.1409 0.0486 
0.1373 0.0009 0.1401 0.0431 
0.1373 0.0008 0.1395 0.0394 

and the conditional variance of Bt is higher when the absolute value of ft is large. 
In Panel C, we report the simulation results in 10,000 simulations for the case 
that ft and et are generated from a multivariate t-distribution with five de­
grees of freedom, and also for the case of 10 degrees of freedom. For the GMM 
estimated risk premium using the traditional moment conditions A*, the re­
sults do not change much from those in Panel B; A* continues to be very ac­
curate even in the presence ofnonnormality and conditional heteroskedasticity. 
As for the GMM estimated risk premium using the SDF moment conditions, A 
continues to be an unreliable estimator of..\. Therefore, the SDF methodology 
does not outperform the traditional methodology even when et exhibits con­
ditional heteroskedasticity. In fact, compared with the results in Panel B, we 
can see that both the bias and the standard deviation of A are higher for the 
case of multivariate t-distribution, making the SDF methodology even less suit­
able for the purpose of estimating the risk premium in this case. 

III. Size and Power of Overidentification Tests 

Unlike the case of risk premium estimation where we can show that the tra­
ditional methodologies are superior, it is not entirely clear whether the tra­
ditional methodologies or the SDF methodology is better suited to test the asset 
pricing restriction a = fJ..\. Both methodologies provide tests that have an as­
ymptotic distribution of x�-l when the model is correct, and an asymptotic 
probability of 1 in rejecting the model when it is wrong. The real issue here is 
about their respective performance in finite samples . In this section, we rely 
on simulation evidence to assess whether these tests have the correct size in 
small samples and whether they have power in rejecting misspecified models.  

To assess the size of the likelihood ratio test, LRT, and the two overiden­
tification tests J1 and J2, we generate excess returns from a one-factor model 
as before .12 We then compute LRT and J1 of the traditional methodologies, 

12 Simulation results for the multivariate t-distribution are qualitatively similar to the case 
of multivariate normal distribution; therefore we do not separately report the results for the 
multivariate t-distribution case in this section. 
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and J2 of the SDF methodology for three different models.  In the first model, 
we use the true factor ft to construct the sample moments and the test sta­
tistics .  In the second model, we use a noisy factor gt = ( ft + nt )I .f5 instead 
of ft to compute the sample moment and the test statistics, where nt is a 
measurement error that is generated from a normal distribution with mean 
0 and variance 4.  In the final model, we specify the unsystematic factor ht = 
fJI-1etl� fJ'I-1fJ as the true factor to perform the test. Although economi­
cally these three factors are very different, statistically they are all consid­
ered to be correctly specified models.13 Therefore, asymptotically, all three 
tests should have an asymptotic distribution of x�-1 for the three correctly 
specified models . 

In Table II, we report the rejection rates of the LRT, J1, and J2 for the 
three models at the 10 percent, 5 percent, and 1 percent significance levels 
based on the x�-l distribution. For the case of the true factor, we observe in 
Table II that the probability of rejection in finite samples is very close to the 
size of the test for all three tests . This indicates that using the asymptotic 
distribution is a very good approximation when we have the true factor in 
the model. For the case of the noisy factor, the probability of rejection is 
typically less than the size of the test, especially when T is small. In this 
case, the performance of the three tests is roughly the same in small sam­
ples.  For the case of unsystematic factors, the finite sample distribution of 
all three tests differs greatly from the asymptotic distribution of x�-1 and 
all three tests underreject the null hypothesis. However, the problem of un­
derrejection for J2 is more serious than that of LRT and J1. In summary, 
when the asymptotic distribution is used to make the acceptance and rejec­
tion decision, the traditional methodologies seem to do no worse than J2 of 
the SDF methodology when we have the correctly specified model . However, 
when the proposed factor does not explain the returns well, we have to be 
more cautious in using the asymptotic distribution of the tests to make the 
acceptance and rejection decision. 

Likelihood ratio tests and GMM overidentification tests are designed to 
detect misspecified models, so the major concern is on their power. Misspec­
ification can take various forms; we focus here on the case in which there is 
a missing factor in the proposed model . In this case, the expected return of 
the assets is not a linear function of the beta of the proposed factor; that is, 
there does not exist a .A such that a = fl.-\. To study the power of the tests, we 
simulate returns using a two-factor model . The two factors are indepen­
dently generated from a bivariate normal distribution and are designed to 
capture the behavior of the standardized excess returns on the value­
weighted market portfolio of the NYSE and the long-term Treasury bond; 
that is, 

13 This is because the moment conditions in equations (14), (6), and (7) can be satisfied with 

g, or h,, instead of{,. Although the parameters fJ and A are different for the three sets of factors, 

the exact linear pricing relation holds in all three cases. 
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Table II 
Size of the Likelihood Ratio Test and the GMM 

Overidentification Tests of Traditional and Stochastic 
Discount Factor Methodologies 

1237 

The table presents the probability of rejecting three correctly specified models using the 

likelihood ratio test (LRT) and the (second stage) GMM overidentification tests using the 

traditional moment conditions and the SDF moment conditions. Excess returns on 10 

assets are simulated using a one-factor model 

r, = a + {Jf, + e,, 

where the values of a = f3A (in percentage per month) and f3 are presented in Table I. The 

factor and the model disturbance are generated as{,� N(0,1) and e, � N(ON,I), where I 
is set to equal the sample covariance matrix of the market model residuals of the 10 

size-ranked portfolios of the NYSE, estimated using monthly returns over the period Jan­

uary 1926 to December 1997. For each length of time-series observations, T, we present 

the probability of rejecting three different models at various significance levels in 10,000 
simulations. The three models differ in terms of the factor they use. The first model uses 

the true factor {,. The second model uses a noisy factor g, = (f, + n ,)!J5, where n, is 

measurement error, distributed as N(0,4). The third model uses an unsystematic factor 

h, = f3'I,-le,!� {3'!.-l/3. 

True Noisy Unsystematic 

Significance Level Significance Level Significance Level 

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 

Panel A: Maximum Likelihood Method (LRT) 

120 0.099 0.048 0.010 0.082 0.037 0.007 0.013 0.003 0.001 

240 0.098 0.047 0.008 0.090 0.042 0.007 0.026 0.008 0.001 

360 0.098 0.048 0.010 0.093 0.043 0.008 0.035 0.012 0.001 

480 0.098 0.048 0.009 0.090 0.046 0.007 0.040 0.015 0.002 

600 0.099 0.049 0.011 0.092 0.047 0.009 0.052 0.022 0.002 

720 0.101 0.050 0.012 0.098 0.048 0.011 0.059 0.024 0.004 

Panel B: GMM Using Traditional Moment Conditions (J1) 

120 0.093 0.043 0.007 0.076 0.032 0.006 0.017 0.004 0.000 

240 0.097 0.046 0.009 0.088 0.042 0.008 0.025 0.007 0.000 

360 0.099 0.049 0.010 0.095 0.045 0.008 0.031 0.010 0.000 

480 0.099 0.049 0.010 0.095 0.048 0.009 0.041 0.016 0.001 

600 0.097 0.046 0.010 0.096 0.046 0.008 0.048 0.017 0.002 

720 0.102 0.048 0.010 0.098 0.047 0.009 0.053 0.020 0.002 

Panel C: Stochastic Discount Factor Methodology (J2) 

120 0.097 0.046 0.007 0.079 0.037 0.006 0.017 0.008 0.001 

240 0.098 0.047 0.009 0.086 0.041 0.007 0.013 0.006 0.001 

360 0.102 0.048 0.008 0.092 0.043 0.008 0.010 0.006 0.001 

480 0.101 0.048 0.009 0.094 0.043 0.007 0.012 0.007 0.002 

600 0.101 0.051 0.011 0.093 0.046 0.010 0.012 0.007 0.003 

720 0.104 0.051 0.009 0.098 0.047 0.010 0.011 0.008 0.004 
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r - E[r  ] 
f = 

mt mt 
� N(O 1) 1 t ' ' 

Um 

r - E[r  ] 
f = 

bt bt 
� N(O 1) 2t ' ' ub 

Cov[ f1 tJ2t] = 0.2 , 

(33) 

(34) 

(35) 

where r mt and rbt are the excess returns on the market portfolio and the long­
term Treasury bond, and um and ub are their standard deviations .  The betas 
of the 10 assets are set to equal the sample betas of the 10 size-ranked port­
folios of the NYSE with respect to f1 t and f2t, estimated using monthly returns 
from January 1926 to December 1997. The true risk premia of the two factors 
are chosen so that the expected excess returns are close to the average excess 
returns on the 10 size portfolios over the sample period; that is, 

where r, /31 and /32 are the average returns and sample betas of the 10 
size-ranked portfolios. Finally, the model disturbances are independently gen­
erated from a multivariate normal distribution 

(37) 

where I is chosen to be the sample covariance matrix of the residuals of the 
10 size-ranked portfolios in the two-factor model . In Table III, Panel A, we 
present the parameters a, {31 , /32, A 1 , and A 2 of the 10 assets that we use in 
our simulation. Under our simulation, the first factor is one that explains a 
lot of the time-series variations of the excess returns (with an average R2 of 
84.73 percent) and the second factor has a very low explanatory power on 
the excess returns (with an average R2 of 2 .51 percent) . Nevertheless ,  nei­
ther /31 nor /32 alone can fully explain the expected excess return a. 

In Table III, we report the rejection rates of LRT, J1 , and J2 for two mis­
specified models at the 10 percent, 5 percent, and 1 percent significance 
levels based on the xlr- 1 distribution. Panel B contains the results when 
only the first factor is included in the model, Panel C contains the results 
when only the second factor is included in the model . Since both models are 
misspecified models, we would like the test to reject them with high prob­
ability. For the case of the misspecified model that includes only the first 
factor, we can observe that all three tests have roughly the same power in 
rejecting the model. With T as large as 360, we can only reject the misspec­
ified model at the 5 percent level roughly 12 percent of the time, but the 
power steadily increases as T goes up. This suggests that when the proposed 
factor has strong explanatory power on the returns and the model misspec-
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ification is not serious, there is not much of a difference between the tradi­
tional methodologies and the SDF methodology. 

Ironically, when the proposed factor in the model is a weak factor, the 
misspecified model becomes even more difficult to detect for the SDF meth­
odology. This can be seen from our simulation results in Panel C of Table III. 
In this case, LRT and J1 have reasonably good power in rejecting this mis­
specified model. When T = 360, these two tests reject the misspecified model 
at the 5 percent level for approximately 34 percent of the time. However, J2 
of the SDF methodology performs much worse than LRT and J1. Even for 
T = 360, we still find that J2 rejects the misspecified model less often than 
the size of the test, making it almost impossible to reject such a misspecified 
model . The poor performance of J2 in finite samples is due to the fact that 82 
is unknown and has to be estimated. When the model is misspecified, the 
estimated 82 will tend to be large because of the pricing error, and hence its 
inverse will be small . Since the inverse of estimated 82 is used to compute 
J2, the test statistic can be very small for grossly misspecified models, es­
pecially when the factor does not explain much of the return. Asymptotically, 
this is not a concern because eventually the pricing errors will dominate as 
T increases, but in finite samples, using an estimated 82 makes the over­
identification test J2 very unreliable. Although the same problem also plagues 
LRT and J1 of the traditional methodologies, we can see in Panel C that its 
impact on LRT and J1 is much less severe . Therefore, if one has to pick a 
specification test to use, it appears that the ones from the traditional meth­
odologies are superior to the one from the SDF methodology. 

We should also note that J2 of the SDF methodology seems to prefer mod­
els with a poor factor to the model with a good factor. This suggests, among 
other things, the danger of using the p-value of the likelihood ratio test or 
GMM overidentification test to choose models. In this regard, the traditional 
methodologies are superior because a poor factor is less likely to be proposed 
to be the only factor in the return-generating process.  The SDF methodology 
does not specify a return-generating process and a poor factor could poten­
tially be chosen as the only factor in the model . As our simulation experi­
ment shows, such poor factors could make the model pass the GMM 
overidentification test of the SDF methodology easily, even though they do 
not explain much of the excess returns and their betas do not fully explain 
the expected excess returns. 

As always, simulation evidence cannot be generalized to other scenarios, 
so our recommendation should be taken with caution. Nevertheless, from 
our simulation evidence, it does appear that there are compelling reasons to 
prefer the traditional methodologies to the SDF methodology. A more rigor­
ous analysis of the size and power of these tests would go a long way in 
settling these issues. 

Finally, we remark that even though nonstandard GMM overidentifica­
tion tests, such as the one suggested by Jagannathan and Wang (1996), do 
not use the estimated covariance matrix of the sample moments to compute 
the test statistic, the estimated covariance matrix is still used in computing 
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the eigenvalues to construct the weights of the linear combination of x� 
distribution that the test statistic is compared with. Therefore, the non­
standard GMM overidentification test does not escape from the problem 
that plagues the standard GMM. Although not reported, simulation evi­
dence suggests that the nonstandard GMM overidentification test that uses 
the identity matrix as the weighting matrix generally has lower power 
than that of the standard GMM overidentification test in detecting our 
misspecified models .  

Iv. Conclusions 

This paper exploits the fact that current empirical studies of asset pricing 
models using the SDF methodology typically ignore a fully specified model 
for asset returns . When asset returns are generated by a linear factor model, 
there are two potential problems associated with the use of the SDF meth­
odology: (1) the accuracy of the estimated risk premium can be very poor and 
(2) its overidentification test has very little power in detecting misspecified 
models .  These problems arise because the moment conditions the SDF meth­
odology uses are very volatile, making accurate estimation and testing dif­
ficult under this methodology. 

By specifying the return-generating process of the asset returns as in the 
traditional methodologies, these two potential problems can be mitigated. 
We demonstrate that, under the assumption that assets returns are gener­
ated by a linear factor model, the standard error of the risk premium under 
the traditional methodologies is much lower than that of the SDF method­
ology. The reason for such improvement is that the traditional methodolo­
gies use moment conditions that are much less volatile than that of the SDF 
methodology, and as a result they provide far more reliable inferences on the 
parameters . Moreover, the specification tests in the traditional methodolo­
gies generally have higher power in rejecting misspecified models than the 
SDF methodology. Our analysis focuses exclusively on linear factor models.  
This is not only due to their tractability, but also their premier importance 
in asset pricing. However, to the extent that any nonlinear model can be well 
approximated by a linear one, our results should also have implications on 
the use of the SDF methodology in nonlinear models where one must be 
cautious about the explanatory power of the factors, the parameter estima­
tion error, the size, and the power of the tests . 

Despite the fact that the SDF methodology has an interesting perspective 
to offer and a parsimonious model to estimate, there are costs associated 
with these benefits . In any event, it appears safe to say that the traditional 
methodologies are here to stay. In particular, traditional tests of asset pric­
ing models will continue to play important roles in understanding the risks 
associated with investing, and perhaps even more so than the stochastic 
discount factor methodology for portfolio choice and performance evaluation 
problems .  
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Appendix 

Proof of Proposition 1: We begin by deriving the asymptotic variance of 
A*, which is given by the (1,1) element of (Di S1 1 D1 )-\ where 

and 

D = E [ i)g1T i)g1T ] 
1 i)A. ' iJfJ ' 

Define a =  [1,0] ' and b = [A.,1] ' ;  then we have 

(A1) 

(A2) 

(A3) 

Therefore, using the identity a ® fJ = (a ® IN) (1 ® fJ)  = (a ® IN)fJ, we have 

= 
[fJ ' (a ' @ IN)S11 (a @ IN)fJ fJ ' (a ' @ IN)S11 (b @ IN) ]

. 
(b ' @ IN)S1 1 (a @ IN)fJ (b '  @ IN)S1 1 (b @ IN) 

From the partitioned matrix inverse formula, the (1, 1) element of 
(D)_ 81 1 D1 )-1 is 

(A4) 

by writing A =  a ® IN and B = b ® IN . Defining d = [1, - A.] ' and 

(A5) 

we will show that the (1,1) element of (Dl_ S1D1 )- 1 can be simplified to 
( fJ ' U- 1/J )-1 . To prove this identity, we define a matrix C = [a, b] and 
consider the inverse of 

(A6) 
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Defining D = [d, e] ,  where e = [0, 1] ' , it is easy to verify that c - 1 = D '  and 
(C ' )- 1 = D. Therefore, we have 

[(C ' (8)1N)S1 1 (C (8)/N)] - 1 

= (D ' @ IN)S1 (D @ IN)  

= 
[ (d ' @  IN)S1 (d @ IN) (d ' ® IN)S1 (e ® IN) ]

. (A7) 
(e '  @ IN)S1(d @ IN)  (e ' @ IN)S1(e @ IN)  

Note that the upper left block of  [(C ' ® IN)S11 (C ® IN)r 1 i s  just U. An­
other way to obtain this submatrix is to apply the partitioned matrix inverse 
formula to (C ' ® IN)S1 1 (C ® IN) , which gives the identity 

For the GMM estimation of the SDF model, we have D2 = E [dg2r/dA.] = 
-fJ, hence Avar[A] = (D2 Si. 1 D2 )-1 = (fJ 'Si. 1 fJ )- 1. Using r1 = fJ (.A + ft ) + 81 
and 

we have 

82 = E [r1 r; ( 1 - {1 .A) 2 ] 

= E [e1 e; ( l - ft .A) 2 ] + E [fJfJ ' (A. + ft ) 2 ( 1 - ft .A) 2 ] 

= (d ' ® IN)E [(z1 ® 81 ) (z 1 ® B1 ) ' ] (d ® IN) + cfJfJ ' 

= U + cfJfJ ', 

(A9) 

(A10) 

where c = E [(.A  + ft ) 2 ( 1 - {1 .A) 2 ] . Note that c > 0 unless P [  {1 = - A.  or 1/.A] = 
1 ,  which is impossible when ft has a continuous distribution. Since 

(All) 

we have 

(A12) 
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which proves the inequality. 
For the case that e1 � N(ON, I) conditional on {, the log-likelihood function 

under the null is 

NT T 1 T 
' -1 £ = -2 log (2 1r ) - 2 log i i i - 2 �� (r1 - A{J - fJ{1 )  I ( r1 - A fJ - fJ{1 ) .  

Hence, w e  have 

Then, 

(JC T 

dA 
= fJ '  I-1 � ( rt - A fJ - fJft ) , 

()£ T 
-;-- = I-1 2: (rt - A fJ - fJft ) ( ft + A) .  
ufJ t� 1 

1 () 2£ 1 T 
- - E -- = - EfJ' I - 1 " ( A + -�" ) = fJ ' I- 1A 

T dAdfJ '  T � I t ' 

(A13) 

(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

Now, it is known that the asymptotic variance matrix of the maximum like­
lihood estimator of (A , fJ )  should be the inverse of the Hessian matrix H, 
where H is given by 

(A19) 
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When Bt - N(ON , I ) conditional on f, we have 81 = 12 ® I and H has the 
same expression as D)_ 811 D1 . This completes the proof. Note that our proof 
only depends on rt having a factor structure and the beta pricing model 
holding; it does not require the true factor ft .  Therefore, Proposition 1 con­
tinues to hold when gt or ht is used as the factor. • 

Proof of Proposition 2: Without loss of generality, we assume the 2N + 1 
sample moment conditions used to estimate .A and fJ are 

r 
glT 

1 g3T = 1 T , 

T t� r lt(1 - ft .A) 

where {31 * 0. Define d = [ 1, - .A] '  and e1 = [ 1, 01v- d '. Since 

= ei_ (d ' <8) /N ) (Z t <8) Bt )  + ei_ fJ (.A  + ft)(1 - ft .A) 

= (d ' ® ei_ ) (zt ® Bt )  + {31 (.A  + ft ) (1 - ft .A) , 

the asymptotic variance of (A**, fj**) is given by (D3 S3 1 D3 )- 1 where 

and 

(A20) 

(A2 1) 

(A22) 

From the proof of Proposition 1, we know that 82 = U + cfJfJ ' , where c = 
E [( .A  + ft ) 2 ( 1 - ft .A) 2 ] . Using the partitioned matrix inverse formula, we 
have 

(A23) 
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Therefore, 

D3 S3 1 D3 = Di S! 1 D1 + (c{3[ )-1Di (d ® e1 ) (d ' ® ei )D1 

- (cf3f )-1Dl_ (d ® e1 ) (d ' ® ei )D1 

- (cf3f )-1Dl_ (d ® e1 ) (d ' ® ei )D1 

+ (c{3f )-1Di (d ® e1 ) (d ' ® ei )D1 

1247 

and the asymptotic variance of (Jt.**, /J * * ) and (Jt.*, /J * )  are identical . This com­
pletes the proof. • 
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