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Abstract

We conduct a simulation analysis of the Fama and MacBeth[1973. Risk, returns and equilibrium:

empirical tests. Journal of Political Economy 71, 607–636.] two-pass procedure, as well as maximum

likelihood (ML) and generalized method of moments estimators of cross-sectional expected return

models. We also provide some new analytical results on computational issues, the relations between

estimators, and asymptotic distributions under model misspecification. The generalized least squares

estimator is often much more precise than the usual ordinary least squares (OLS) estimator, but it

displays more bias as well. A ‘‘truncated’’ form of ML performs quite well overall in terms of bias

and precision, but produces less reliable inferences than the OLS estimator.
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1. Introduction

Explaining cross-sectional differences in asset expected returns is one of the great
challenges of modern finance. Theoretical models, such as the capital asset pricing model
(CAPM) of Sharpe (1964), Lintner (1965), and Black (1972), and the intertemporal/
consumption models of Merton (1973), Breeden (1979), and Rubinstein (1976), imply that
expected returns should be linear in asset betas with respect to fundamental economic
aggregates. Equilibrium extensions of the Ross (1976) arbitrage pricing theory and the
‘‘multivariate proxy’’ perspective on factor pricing models (e.g., Shanken, 1987) yield
similar relations. There is an enormous body of empirical research that examines these
linear asset pricing relations. One of the most widely used methodologies is the two-pass
regression approach, known as the Fama-MacBeth procedure, developed by Fama and
MacBeth (1973) and Black, Jensen, and Scholes (1972). The two-pass procedure is used not
only in asset pricing but also in many other areas of finance. For example, Fama and
French (1998), Grinstein and Michaely (2005), and Easley, Hvidkjaer, and O’Hara (2002)
apply it in analyzing corporate finance and market microstructure issues.1

The asymptotic statistical properties of the Fama-MacBeth procedure were first
established by Shanken (1992) and later extended by Jagannathan and Wang (1998).
However, despite its widespread application, surprisingly little is known about the small-
sample statistical properties of the methodology. An early simulation study by Amsler and
Schmidt (1985) provides some insights, though the main focus of that paper is on
multivariate tests of the linear expected return relation. A contemporaneous paper by
Chen and Kan (2004) provides analytical results on estimation bias as well as some
simulation evidence. Our paper attempts to fill in some of the important gaps in our
knowledge, comparing the performance of the usual ordinary least squares estimator
(OLS) version of the Fama-MacBeth procedure to the weighted least squares (WLS) and
generalized least squares (GLS) approaches occasionally seen in the literature.2

In addition to the two-pass approach, we explore alternative analytically tractable
procedures based on maximum likelihood (ML) estimation and the generalized method of
moments (GMM) of Hansen (1982). The ML method is important in that it is
asymptotically efficient under the classical independent and identically distributed (iid)
multivariate normal returns assumption. The GMM approach is of further interest since
serial correlation and conditional heteroskedasticity in the joint distribution of returns and
factors is easily accommodated in making asymptotically valid inferences. These
characteristics of the data have typically been ignored in the empirical literature, but
will likely receive more attention in the future. The computational simplifications that we
introduce facilitate the simulation analysis and should make these methods more accessible
to researchers. We also demonstrate an equivalence between ML estimation and one form
of the GMM estimator under the classical assumptions.

Application of the estimation methods considered here implicitly assumes that the expected
return relation is well specified. One approach to testing this specification is to include
additional cross-sectional regressors in the relation and see whether such variables are
1Applications of the procedure in recent years can be found in at least 1,357 papers that cite Fama and MacBeth

(1973), as compiled by Google.
2Balduzzi and Robotti (2004) consider estimation issues related to the use of mimicking portfolios for non-

traded factors.
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significantly related to returns. For example, Fama and MacBeth add beta-squared and
residual variance in their study. This approach requires that the researcher have some idea as
to the nature of the departure from the asset pricing relation and is vulnerable to the influence
of data mining. In contrast, multivariate tests focus on the overall magnitude of estimated
pricing deviations and have the potential to reject the null for a broad range of general
alternatives. The downside, however, is a possible reduction in power against particular
alternatives of interest. Moreover, since the tests typically require some sort of sorting of
securities into portfolios, data mining can still be a problem (e.g., Lo and MacKinlay, 1990).
We evaluate the actual size of various tests and power against several alternatives of interest.
One could argue that, strictly speaking, all models are false and are, at best, close

approximations to reality. Moreover, even if we entertain the possibility that a given asset
pricing model holds exactly, the limited power of pricing tests implies that we cannot
always know whether the model is well specified. Thus, it is inevitable that we will often,
knowingly or unknowingly, estimate an expected return relation that departs from exact
linearity in the betas. We derive the asymptotic distribution of the Fama-MacBeth
estimator in this context, thereby providing insight into the extent to which misspecifica-
tion can affect inferences about factor risk premia.
The paper is organized as follows. Section 2 reviews the statistical specification of the

asset pricing model and the different versions of the Fama-MacBeth procedures. We then
present the asymptotic theory for the second-pass risk premium estimators when the asset
pricing restrictions are violated. In Section 3, we study the ML method and show how to
obtain the parameter estimates analytically. In Section 4, we develop two analytical GMM
methods that are robust to conditional heteroskedasticity and serial correlation. Extensive
simulations are conducted in Section 5 to study the finite-sample properties of the various
approaches to estimation and testing. An empirical application is discussed in Section 6.
Conclusions are offered in the final section.

2. OLS, WLS, and GLS two-pass procedures

In this section, we first briefly review the standard cross-sectional model and the
associated OLS, WLS, and GLS two-pass estimators and tests. We then provide
asymptotic distributional results for the estimators under the alternative hypothesis that
the cross-sectional pricing restrictions are not valid.

2.1. Model, estimation, and tests

We assume that asset returns are governed by a multifactor model:

Rit ¼ ai þ bi1 f 1t þ � � � þ biK f Kt þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T , (1)

where
Rit ¼ the return on asset i in period t (1pipN),
f jt ¼ the realization of the jth factor in period t (1pjpKÞ,
�it ¼ the disturbances or random errors,
and T is the number of time-series observations. Like most studies, we maintain the
assumption that the disturbances are independent over time and jointly distributed each
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period with mean zero and a nonsingular residual covariance matrix S, conditional on the
factors. The maximum likelihood analysis in Section 3 will also impose joint normality of
the disturbances, conditional on the factors. The factors are assumed to be independent
and identically distributed (iid) over time though, as demonstrated in Shanken (1992), this
assumption can easily be relaxed in deriving asymptotic results for the second-pass
estimators. The GMM approaches presented later in Section 4 relax the iid assumption on
the disturbances as well.

The asset pricing hypothesis underlying the standard two-pass procedure is3

H0 : E½Rt� ¼ g01N þ g1b1 þ � � � þ gKbK , (2)

where E½Rt� is the N-vector of expected returns on the assets and b1; . . . ; bK are N-vectors
of the multiple-regression betas. In the first stage of the two-pass procedure, estimates of
the betas are obtained by applying OLS to Eq. (1) for each asset. Let b̂ ¼ ðb̂1; . . . ; b̂K Þ be
the resulting N � K matrix of OLS slope estimates. For each period t, one then runs a
cross-sectional regression of Rt ¼ ðR1t; . . . ;RNtÞ

0 on X̂ ¼ ½1N ; b̂� in the second stage to get
an estimator of G ¼ ðg0; g1; . . . ; gK Þ

0
¼ ðg0; g

0
aÞ
0,

Ĝt ¼ ðX̂
0
X̂ Þ�1X̂

0
Rt. (3)

The average,

Ĝ
OLS
¼
XT

t¼1

Ĝt=T ¼ ðX̂
0
X̂ Þ�1X̂

0
R̄, (4)

is taken as the final estimator of G, where R̄ is the N-vector of sample means of the asset
returns. In some studies, betas are estimated from a rolling window of past data, further
complicating the econometric analysis.

In the second pass, Shanken (1985), among others, proposes the use of the following
GLS estimator:

Ĝ
GLS
¼ ðX̂

0bS�1X̂ Þ�1X̂
0bS�1R̄, (5)

where bS is the estimator of the residual covariance matrix computed as the cross product
of the fitted factor model residuals divided by T.4 Shanken (1992) proves that the GLS
estimator is asymptotically efficient.

The OLS estimator is not asymptotically efficient, in general. However, since the GLS
estimator requires estimation of the inverse of the covariance matrix, it might not be
expected to perform well when the sample size is small. An alternative that would seem to
have potential is a weighted least squares estimator,

Ĝ
WLS
¼ ðX̂

0bS�1d X̂ Þ�1X̂
0bS�1d R̄, (6)

where the weighting matrix bSd consists of the diagonal elements of bS. Litzenberger and
Ramaswamy (1979) were perhaps the first to use this type of estimator in testing the
CAPM.
3It might be advisable to impose additional constraints if some of the factors are portfolios; see Shanken (1992).

However, such constraints have usually been ignored in the two-pass literature. Our analytical results can be

extended to accommodate these constraints.
4We assume T4ðN þKÞ so that the usual sample covariance estimator is invertible. Shanken (1985) shows that

the same estimator is obtained using the sample covariance matrix of returns.
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The issue of whether a specific factor is priced has been of primary interest in the
literature. The OLS t-ratios traditionally used for assessing the significance of factor
pricing are computed as

t̂j ¼
ĝOLS

j

ŝj=
ffiffiffiffi
T
p ; j ¼ 1; . . . ;K , (7)

where ĝOLS
j and ŝj are the sample mean and standard deviation of the jth component of the

time series Ĝt; t ¼ 1; . . . ;T . Similar ratios can be computed for the WLS and GLS
estimators. The p-values are usually computed from a t distribution with degrees of
freedom T � 1 or from a standard normal distribution. The advantage of evaluating
significance in this manner is that cross-sectional heteroskedasticity and correlation
are implicitly taken into account, as these characteristics of the distribution influence the
precision of each estimator and, therefore, are reflected in the time-series variability of the
estimators. However, this approach ignores estimation error in the betas.
Note that all of the two-pass estimators can be written in the following form:

Ĝw ¼ ÂwR̄; Âw ¼ ðX̂
0
ŴX̂ Þ�1X̂

0
Ŵ , (8)

where Ŵ is a symmetric weighting matrix. For example, the OLS estimator is obtained
with Ŵ equal to the identity matrix. Under the standard iid assumption, Shanken (1992)
provides the asymptotic covariance matrix for this type of estimator,5

Uw ¼ ACovðĜwÞ ¼ ð1þ cÞOw þ S�f , (9)

where c ¼ g0aS
�1
f ga, ga (as defined earlier) is G excluding the first element, Ow ¼ AwSA0w, Aw

is the probability limit of Âw, and

S�f ¼
0 0

0 Sf

" #
, (10)

with Sf the population covariance matrix of the K factors. Asymptotically standard
normal ‘‘t-ratios’’ are then obtained by dividing the estimates by their asymptotic standard
errors. It follows that the Fama-MacBeth standard errors, computed as the time-series
standard errors of the estimated gammas, understate the true asymptotic standard errors
by the amount cOw. Although this difference is fairly small in our simulations, it could be
important elsewhere; see, e.g., Section 4.1 of Shanken (1992).
The usual interpretation of standard tests for factor pricing presumes that expected

returns can indeed be expressed as a linear function of the betas. However, a risk premium
parameter can be significantly different from zero based on the t-test, even if there are large
pricing errors. Therefore, it is important to separately test the validity of the model. As
mentioned earlier, a common approach to testing linearity is to include additional
variables in the cross-sectional regression and evaluate the significance of these variables
via the Fama-MacBeth method.
5This is the limiting covariance matrix for
ffiffiffiffi
T
p

times the difference between the estimator and the true parameter

value.
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Shanken (1985) proposes a cross-sectional specification test of (2) against a general
alternative,

Qc ¼ TðR̄� ĝGLS
0 1N � b̂ĝGLS

a Þ
0bS�1ðR̄� ĝGLS

0 1N � b̂ĝGLS
a Þ=ð1þ ĉÞ, (11)

where Ĝ
GLS
¼ ðĝGLS

0 ; ĝGLS0

a Þ
0 and ĉ is a consistent estimator of c with the GLS weighting

matrix. Statistically, ðT �N þ 1ÞQc=ðTðN � K � 1ÞÞ is approximately F-distributed with
degrees of freedom N � K � 1 and T �N þ 1. Qc summarizes the estimated pricing errors

across assets weighted by bS�1, with an adjustment in the denominator for errors in the
betas. The larger the pricing errors, the larger is the observed value for Qc. Intuitively, if (2)
is true, Qc should not be ‘‘too far’’ from zero, as the errors will be random. On the other
hand, if (2) does not hold then there will be systematic deviations as well, resulting in larger
values of the observed test statistic. Roll (1985) provides an interesting geometric
interpretation of Qc when the factor is the return on a benchmark portfolio. An identical
test statistic is obtained if the sample covariance matrix of asset returns is substituted for
the residual covariance matrix in Qc.

2.2. Estimation under the alternative

Standard inference using the two-pass procedures implicitly assumes that the asset pricing
restriction (2) is true. What happens when this restriction is violated, as is likely to be the case
in practice? The purpose of this subsection is to provide the asymptotic distributions of the
two-pass estimators under the alternative and a model specification test.

Whether the restriction is true or not, we can always project the expected return vector
E½Rt� onto X ¼ ½1N ; b�,

E½Rt� ¼ XGw þ Zw, (12)

where

Gw ¼ ðX
0WX Þ�1X 0WE½Rt� (13)

is the coefficient vector of the weighted projection and Zw is the projection residual or (true)
pricing error vector. As the sample size, T, gets large, Ĝw will converge to Gw. This was
noted previously by Kandel and Stambaugh (1995), who study the cross section of returns
when the benchmark portfolio is inefficient. We go beyond this consistency result and
derive the asymptotic distribution of the second-pass estimator when the expected return
relation (2) is misspecified, extending Theorem 1 of Shanken (1992).6

Proposition 1. Given the assumptions of Section 2.1 and the additional joint normality

assumption for the disturbances conditional on the factors, and if vecðŴ Þ is a function of Ŝ
alone with asymptotic limit vecðW Þ and asymptotic covariance matrix V w, we haveffiffiffiffi

T
p
ðĜw � GwÞ �

asy
Nð0;Uw þ Uw1 þ U 0w1 þ Uw2Þ, (14)
6Factor portfolio constraints can easily be accommodated in this framework when some or all of the factors are

portfolio spread or excess returns. An independent paper by Kimmel (2003) considers the GLS case with the

(excess) zero-beta rate constrained to equal zero. Chen, Kan, and Zhang (1999) analyze the relation between

statistical significance and explanatory power for expected returns allowing for model misspecification of the sort

considered here. They do not address issues related to estimation error in the betas, however.
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where Uw is given in (9),

Uw1 ¼ �ðX
0WX Þ�1

0

S�1f gwaZ
0
wWS

 !
WX ðX 0WX Þ�1, (15)

which vanishes for the GLS estimator, and

Uw2 ¼ ðX
0WX Þ�1½ðZ0wWSWZwÞðS

�
f Þ
�1
þ ðZ0w � X 0ÞV wðZw � X Þ�ðX 0WX Þ�1, (16)

where ðS�f Þ
�1 denotes the following matrix:

ðS�f Þ
�1
¼

0 0

0 S�1f

" #
. (17)

In the GLS case, Uw2 is given by

Uw2 ¼ ðZ0wS
�1ZwÞ½ðX

0S�1X Þ�1ðS�f Þ
�1
ðX 0S�1X Þ�1 þ ðX 0S�1X Þ�1�. (18)

In the WLS case,

Uw2 ¼ ðX
0S�1d X Þ�1½ðZ0wS

�1
d SS�1d ZwÞðS

�
f Þ
�1
þ X 0HwX �ðX 0S�1d X Þ�1, (19)

where Sd consists of the diagonal elements of S and Hw is an N �N matrix whose ði; jÞ
element is given by Hijw ¼ 2s2ijZiwZjw=ðs

2
iis

2
jjÞ, with Ziw the ith element of Zw. With OLS, Vw is

zero and so Uw2 is given by the first term of (16) only. Joint normality is, therefore, not

required in this case.

Proof. See Appendix A.

Proposition 1 shows that the asymptotic covariance matrix of the two-pass estimator is
altered when the null hypothesis is violated. There are two new terms in addition to the
usual Uw. These relate to the product of the Âw matrix and the pricing error vector, Zw. Uw2

is the covariance matrix of this product while Uw1 is its covariance with the original
disturbance terms that are present in the absence of misspecification. Although Uw þ

Uw1 þ U 0w1 þ Uw2 is obviously positive definite, it is not clear whether it is greater than Uw or
not. Intuitively, the interaction between the pricing errors and the errors in b̂ introduces
additional ‘‘noise’’ that can reduce the precision of the risk premium estimates. While we
have not shown this theoretically, our simulation results support this intuition.
It is easy to verify that, when the null (2) is true and E½Rt� ¼ XG, Gw is independent

of W, i.e.,

Gw ¼ ðX
0WX Þ�1X 0WXG ¼ G. (20)

Thus, the various two-pass estimators all converge to the same limit when the null is true.
In this case, differences between the estimators are entirely attributable to random
estimation errors. On the other hand, when (2) is false, the estimators can differ more
systematically, as we will see in the simulation examples presented later. Thus, a test of this
necessary condition can serve as another means of evaluating expected return linearity. The
asymptotic distribution of the difference of two-pass estimators follows easily from the
results in Shanken (1992), yielding a simple chi-squared test as shown in the next
proposition.
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Proposition 2. Under the assumptions of Shanken (1992, Theorem 1), and if the ðK þ 1Þ �
N matrix, Pa ¼ ðX

0S�1X Þ�1X 0S�1 � ðX 0X Þ�1X 0, is of rank K þ 1, then

Jg ¼ TðĜ
OLS
� Ĝ

GLS
Þ
0
½ð1þ ĉÞP̂aŜP̂

0

a�
�1ðĜ

OLS
� Ĝ

GLS
Þ �

asy
w2Kþ1, (21)

as T !1, where P̂a ¼ ðX̂
0
Ŝ
�1

X̂ Þ�1X̂
0
Ŝ
�1
� ðX̂

0
X̂ Þ�1X̂

0
.

Proof. See Appendix A.

It might be instructive to contrast the notion of model misspecification used here with that
analyzed by Jagannathan and Wang (1998). They posit a ‘‘true’’ beta-pricing model and
consider the situation in which some other set of factors is employed in estimation.7 The
estimated model might include proxies for some of the true factors or be an entirely different
relation. For example, the estimated relation could be the CAPM security market line, while the
true model is a consumption CAPM. Naturally, the (population) coefficients in the estimated
model will generally differ from those in the true model in either case. Therefore, as
Jagannathan andWang observe, the t-statistic for a factor risk premium in the estimated model
can diverge to infinity in large samples, even if the corresponding true factor is not priced.

We focus, instead, on the question of whether the factors in the estimated model are
priced, i.e., whether the betas on those factors are related to expected returns. Our
asymptotic results allow the researcher to test hypotheses about that relation, even if the
model is misspecified, in the sense that the betas do not fully account for the cross-sectional
variation in expected returns on the given assets. Of course, it is always important to
supplement inferences about correlation between betas and expected returns with evidence
on the extent of deviations, if any, from the model. The traditional inclusion of additional
characteristics like firm size in the expected return relation is one such method. Lewellen,
Nagel, and Shanken (2006) introduce new multivariate techniques for evaluating the
magnitude of model misspecification.

3. The maximum likelihood approach

In this section, we provide a detailed discussion of the maximum likelihood approach as
applied to the two-pass regression model. We solve the estimation problem analytically
and review the associated asset pricing tests. It should be noted that our analytical
expression for the ML estimator has recently been simplified by Chen and Kan (2004).

To apply the ML approach, it is convenient to rewrite the asset pricing restrictions (2) in
terms of the alphas

H0 : a ¼ l01N þ l1b1 þ � � � þ lKbK , (22)

where l0 ¼ g0 and lk ¼ gk � E½f k� for k ¼ 1; 2; . . .K . Then, the ML estimator of the risk
premia vector, ga, is obtained by adding the factor-mean vector to the estimator of
la ¼ ðl1; . . . ; lK Þ

0. Likewise, the factor covariance matrix is added to the asymptotic
covariance matrix of la.

8 To find the ML estimator of la, we need to maximize the
7It is important to recognize that alternative sets of factors can span the same equilibrium benchmark, e.g., the

market portfolio in the CAPM. Either set would be a perfect proxy for the market portfolio in the sense of

Shanken (1987) and could be considered a true model.
8This assumes that the factors are iid and that the ML estimator for the factor mean is just the sample mean, as

would be the case, for example, under normality.
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likelihood function over all the parameters—the betas, covariance parameters, and
l ¼ ðl0; l

0
aÞ
0. Since the parameters enter the restriction multiplicatively, the constraints are

nonlinear. As a result, standard procedures are not applicable and special techniques have
to be developed to solve the maximization problem.
Gibbons (1982) is the first to suggest using the ML method to estimate a special case of

(22) for K ¼ 1 with an additional constraint, l1 ¼ �l0, which is an implication of the zero-
beta capital asset pricing model. This version of the CAPM can arise if the borrowing rate
differs from the lending rate. Extending a result of Kandel (1984), Shanken (1986) gives an
explicit solution for the zero-beta ML estimator. Here we solve for the estimator with only
(22) imposed, the case most often considered in the two-pass estimation literature.
Stambaugh (1982) uses ML estimation for this specification with K ¼ 1.
Following Shanken (1985), one can show that the ML estimator of l minimizes the

function

QðlÞ ¼
ð ~a� l01NÞ

0bS�1ð ~a� l01NÞ

1þ ðF̄ þ laÞ
0bD�1ðF̄ þ laÞ

, (23)

where ~a ¼ â� l1b̂1 � � � � � lK b̂K and F̄ and bD are the sample mean and covariance matrix
of the factors. Note that the numerator is a quadratic form in the pricing errors.
Minimizing this quadratic form alone yields the GLS cross-sectional regression estimator.
Given (23), the ML estimator can be computed as follows. Let

â� ¼ â� ð10NbS�11NÞ
�1
ð10N
bS�1âÞ1N , (24)

b̂
�

j ¼ b̂j � ð1
0
N
bS�11N Þ

�1
ð10N
bS�1b̂jÞ1N , (25)

for j ¼ 1; . . . ;K and b̂
�
¼ ðb̂

�

1; . . . ; b̂
�

K Þ. Then compute ðK þ 1Þ � ðK þ 1Þ matrices A and B

as

A ¼
â�
0bS�1â� �â�

0bS�1b̂�
�b̂
�0bS�1â� b̂

�0bS�1b̂�
0@ 1A; B ¼

1þ F̄
0bD�1F̄ F̄

0bD�1bD�1F̄ bD�1
 !

. (26)

Now let L be a lower-triangular matrix such that L0L ¼ B�1. It is straightforward to
compute the eigenvalues and eigenvectors of

jLAL0 � zI j ¼ 0. (27)

Letting ð1; ~l
0

aÞ
0 be the eigenvector (re-scaled to make the first element equal to one)

corresponding to the smallest eigenvalue of (27), we have the following proposition.

Proposition 3. The ML estimator of la ¼ ðl1; . . . ; lK Þ
0 equals ~la ¼ ð

~l1; . . . ; ~lK Þ and the ML

estimator of l0 is

~l0 ¼ ð10NbS�11N Þ
�110N

bS�1ðâ� ~l1b̂1 � � � � � ~lK b̂K Þ. (28)

Proof. See Appendix A.

Given the ML estimate of l, the constrained beta estimates are obtained by running
time-series regressions of Rt �

~l01N on F�t ¼ ðf 1t þ
~l1; . . . ; f Kt þ

~lK Þ
0. For correct coding,

it is advisable to verify that the first-order derivatives of the likelihood function are
identically equal to zero (to the accuracy of rounding error) when evaluated at the
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constrained estimates, i.e.,

qLc

qlj

¼ b0jS
�1
XT

t¼1

½Rt � l01N � b1ðf 1t þ l1Þ � � � � � bK ðf Kt þ lK Þ� ¼ 0, (29)

for j ¼ 1; . . . ;K . When K ¼ 1, we also have the following results for the risk premium
estimator.

Proposition 4. The ML estimator of g1, ~g
ML
1 , is the root of a quadratic equation. Moreover, if

the GLS estimator satisfies ĝGLS
1 40, we have

~gML
1 4ĝGLS

1 (30)

and the reverse holds if ĝGLS
1 o0.

Proof. See Appendix A.

Kandel (1984) and Roll (1985) derive a similar result when the single factor is a portfolio
and the associated restriction on the risk premium estimator is imposed. Proposition 4
treats the case of a general one-factor model, without any such restriction.

The traditional analysis of linear regression estimation with an independent variable that
is measured with error reveals a bias in the estimated slope coefficient toward zero. Chen
and Kan (2004) show that this conclusion holds for the second-pass GLS estimator of g1 as
well. Against this background, Proposition 4 is interesting in that it suggests that
(simultaneous) ML estimation of all parameters can reduce this errors-in-variables bias. In
fact, Shanken (1992) demonstrates that the bias is eliminated, in a limiting sense, when the
number of assets, N, is large. Thus, one might have conjectured that the ML estimator is,
indeed, unbiased in finite samples. However, Chen and Kan (2004) have also shown that
the ML estimator of g1 does not even have a mean, shedding light on Amsler and
Schmidt’s (1985) observation that the ML estimator sometimes takes on extreme values in
their simulations.

It is difficult to know what message to take away from all of this in terms of applied
work. In particular, it would not make sense to focus on the moments of the ML estimator
in simulations. Instead, we explore a simple ‘‘truncated’’ version of the ML estimator;
specifically, if the absolute value of the ML estimator is more than twice that of the GLS
estimator, we set the truncated estimator equal to the GLS estimator, otherwise it is
unchanged. (Of course, other truncation rules could be considered; for example, we also
examined a five times GLS rule with similar results.) This estimator will have finite
moments whenever the GLS estimator has finite moments, and it will have the same
asymptotic distribution, as T !1, as the GLS and ML estimators.9 Its performance in
finite samples remains to be evaluated.

One approach to evaluating model specification is to use the standard likelihood ratio
test of (22), which can be shown to equal T logðjeSj=jbSjÞ, where eS is the S estimator
evaluated at the constrained ML estimator of the alphas and betas. This test has an
asymptotic chi-squared distribution w2N�K�1. Since the chi-squared distribution is only a
9We make use of the fact that the mean of a random variable is finite if and only if the mean of its absolute value

is finite. The asymptotic result follows from the fact that, since GLS and ML are both consistent estimators, the

probability of truncation converges to zero for large T when the true parameter is nonzero. To cover the zero case,

it is sufficient to add a requirement that the ML estimator exceed some small fixed number in order for truncation

to occur.
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first-order asymptotic approximation and tends to reject too often in this context, Jobson
and Korkie (1982) suggest the use of a Bartlett (1947) correction,

LRT ¼ ½T �
1

2
ðN þ K þ 3Þ� logðjeSj=jbSjÞ �asy w2N�K�1. (31)

Asymptotically, both tests have the same limiting distribution. The Bartlett-corrected test
performs much better, however, and hence we will use this throughout. As an alternative,
one can substitute the ML estimator of G for the GLS estimator in the earlier Qc statistic
and perform an F-test of (22). Shanken (1985) shows that the resulting statistic is actually a
monotonic transformation of the likelihood ratio test for this problem. Under additional
factor portfolio constraints of the multi-beta CAPM, Velu and Zhou (1999) provide the
small-sample distribution of the likelihood ratio test, which is shown to depend on
nuisance parameters.

4. The GMM approach

The methods discussed thus far—the different versions of the Fama-MacBeth
two-pass methodology and the traditional maximum likelihood approach—assume that
returns are independent and identically distributed over time. If returns exhibit
heteroskedasticity conditional on the factors or serial correlation, the standard errors
of the parameter estimates might not be correct, even asymptotically, and the associated
tests might no longer be valid. Shanken (1992) shows how to adjust Fama-MacBeth
standard errors for serial correlation in the factor component of returns, while
Jagannathan and Wang (1998) derive the asymptotic covariance matrix under conditional
heteroskedasticity.
A conceptually simple and more general solution to the problem, advocated by

Cochrane (2001), is to use Hansen’s (1982) GMM approach, which is robust to both
conditional heteroskedasticity and serial correlation in the return residuals as well as in the
factors. Following MacKinlay and Richardson (1991) and Harvey and Zhou (1993), the
factor model moment conditions are

E Et �
1

F t

 !" #
¼ E

Rt � a� bF t

ðRt � a� bF tÞ � Ft

" #
¼ 0. (32)

These earlier papers explore GMM-based tests of the familiar zero-intercept restriction,
which requires that the factors are portfolio excess returns and that the zero-beta rate is
known, typically assumed to equal a riskless Treasury bill rate. We consider both
estimation and testing under the more general restriction (22).
Let gT be the sample moments:

gT ðyÞ ¼
1

T

XT

t¼1

EtðyÞ � Zt; NL� 1, (33)

where y ¼ ðl0; b01; . . . ; b
0
K Þ
0 is the vector of parameters, L ¼ K þ 1 and Zt ¼ ð1;F

0
tÞ
0. The

GMM estimator requires the solution of

minQ ¼ gT ðyÞ
0W T gT ðyÞ, (34)
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under the constraint (22), where W T , NL�NL, is a positive definite weighting matrix.
Since the constraint is nonlinear and the number of parameters, q ¼ NK þ L, is large,
numerical solutions to (34) are difficult to obtain. The problem is exacerbated as numerical
solutions might not converge to the global minimum or even converge at all. These
difficulties in implementing GMM might be one reason for its infrequent use in estimating
the cross-sectional regression model.

While intractable in general, for a special class of weighting matrices it is possible to
solve (34) analytically in terms of l0 only. Thus, the multidimensional optimization
problem, which is often difficult to implement in practice, is reduced to a one-dimensional
problem that can easily be solved using one of the many available algorithms. This is
particularly important for simulations in which thousands of estimates must be computed.
We summarize the key result as follows:

Proposition 5. If the weighting matrix is of the following form:

W T ¼W 1 �W 2; W 1 : N �N; W 2 : L� L, (35)

then the GMM estimator of y is given as a function of l0 and the data,

~l
0

a ¼
~A1
~A
�1

2 ,

ð ~b1; . . . ; ~bK Þ
0
¼ ~A2ðX

�0PX �Þ�1X �
0

PðR� l01T1
0
N Þ, (36)

where ~A ¼ ðZ0PZ=T2Þ
�1=2 ~E ¼ ð ~A

0

1;
~A
0

2Þ
0 with ~A2 the lower K � K submatrix of ~A,

P ¼ ZW 2Z
0, X � ¼ Z ~A, R is a T �N matrix formed from the Rt’s, Z is a T � L matrix

formed from the Zt’s, and ~E is an L� K matrix formed from the standardized eigenvectors

( ~E
0 ~E ¼ IK ) corresponding to the K largest eigenvalues, x1; . . . ; xK , of the following L� L

matrix:

ðZ0PZ=T2Þ
�1=2
½Z0PðR� l01T1

0
NÞ=T2�W 1½Z

0PðR� l01T1
0
NÞ=T2�0ðZ0PZ=T2Þ

�1=2.

(37)

Moreover, the estimator for l0 is obtained by minimizing the objective function

Q�ðl0Þ ¼ tr½W 1ðR� l01T1
0
NÞ
0PðR� l01T1

0
N Þ=T2� � x1 � � � � � xK . (38)

Proof. See Appendix A.

In general, the optimal weighting matrix associated with the moment conditions (32) is
S�1T , where ST is a consistent estimator of

S0 ¼
X1

j¼�1

E½gtðyÞgt�jðyÞ
0
�, (39)

where gtðyÞ ¼ EtðyÞ � Zt. One example is the well-known estimator of Newey and West
(1987). The optimal matrix is of the required form when the disturbances satisfy the usual
regression assumptions in Section 2.1 and the time series of factors is stationary, but
otherwise it need not satisfy the condition in Proposition 5. In the former case, the natural
consistent estimator of S0 is

Ŝiid ¼ Ŝ�
1

T

XT

t¼1

ZtZ
0
t

 !
. (40)
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With this choice of the weighting matrix, we refer to the estimator as GMM1.10 We then
have the following interesting result, which has not been noted previously in the literature.

Proposition 6. With weighting matrix W T ¼ Ŝ
�1

iid as in (40),

lGMM1
¼ lML, (41)

i.e., the GMM1 estimator is numerically identical to the ML estimator.

Proof. See Appendix A.

This equivalence is surprising, insofar as the objective function that is minimized by the
GMM1 estimator appears, at first glance, to be quite different from the likelihood function
that is maximized by the ML estimator. We have verified the equivalence numerically as
well, however. Although the ML approach is computationally more convenient in the iid
normal case, the computational simplification provided by Proposition 5 for GMM
estimation might be important in other applications in which these strong assumptions are
weakened. Given the surprising Chen and Kan (2004) results on ML estimation noted
earlier, it follows immediately from Proposition 6 that the finite-sample moments of the
GMM1 estimator do not exist. On the other hand, it is not easy to directly derive the
asymptotic distribution of the ML estimator in the presence of conditional hetero-
skedasticity and/or serial correlation. Now this follows straightforwardly from standard
GMM results, as outlined below.
With an arbitrary weighting matrix W T and a given consistent estimator, ST , of S0, the

asymptotic covariance matrix of the GMM1 estimator is provided by the standard GMM
theory as

Ŝy ¼ ðD
0
T W T DT Þ

�1D0T W T ST W T DT ðD
0
T W T DT Þ

�1, (42)

where DT , NL� ðNK þ LÞ, is the matrix of derivatives of gT ðyÞ with respect to the
parameters. This formula can be used to obtain standard errors for the risk premium
estimates for any weighting matrix W T . Based on this, the associated ‘‘t-ratios’’ can then
be computed and are asymptotically valid under conditional heteroskedasticity and/or
serial correlation of the data.
When the optimal weighting matrix is employed, T times the GMM quadratic in (34)

follows a central chi-squared distribution with degrees of freedom equal to the number of
moment conditions minus the number of parameters, a standard result in the GMM
literature. More generally—for example, if an alternative weighting matrix is used to
obtain an analytical GMM estimator—the distribution will not be chi-squared but a linear
combination of chi-squared distributions. Nevertheless, a simple analytical chi-squared
test of model specification can be obtained as described in Theorem 1 of Zhou (1994). Like
the GMM1 estimator, this test is robust to conditional heteroskedasticity and serial
correlation.
The estimator GMM1 has been defined in terms of moment conditions that are based on

the factor-model regression parameterization of returns. As with ML, the parameters in
the joint distribution of the factors play no role in the estimation of l in this case. These
moments become relevant when the factor means are added to the l estimates to obtain the
10Kan and Zhou (1999) and Jagannathan and Wang (2002) consider a related application of GMM for a model

with the (excess) zero-beta rate constrained to equal zero.



ARTICLE IN PRESS
J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–86 53
GMM1 estimates of the g’s.11 An alternative formulation of the moment conditions
provides direct estimates of the g’s. This approach, which builds on Harvey and Kirby
(1995), uses the fact that betas can be expressed in terms of moments involving the return/
factor means and the covariance matrix of the factors. Alphas need not be separately
identified.

For simplicity, consider the case K ¼ 1. The multifactor case is treated in the Appendix
(A.7). Note that the asset pricing restriction, Eq. (2), can be written as

E½Rt� ¼ g01N þ g1
covðRt; f 1tÞ

s21
, (43)

where s21 is the factor variance. Using this parameterization, the relevant moment
conditions are

E½htðjÞ� ¼ E

Rt � mr

f 1t � m1
ðf 1t � m1Þ

2
� s21

Rt � g01N � g1
ðRt�mrÞðf 1t�m1Þ

s2
1

2666664

3777775 ¼ 0, (44)

where mr and m1 are the population means of the returns and the factor, and j is the
vector of all the parameters, mr;m1;s

2
1, and G. There are 2ðN þ 1Þ moment conditions

in (44).
We partition htðjÞ into two subvectors, h1tðj1Þ and h2tðj1;j2Þ, where j1 is a vector of

the first N þ 2 parameters, and j2 ¼ G. Since the number of moment conditions in the first
set is equal to the number of parameters, this subsystem is exactly identified. Hence the
GMM estimator of j1 is ĵ1 ¼ ðR̄

0
; ¯f 1

0
; ŝ21Þ

0, independent of the weighting matrix. Plugging
these estimates into the last N moment conditions enables us to identify the risk-return
parameters by setting E½h2tðĵ1;j2Þ� ¼ 0. Newey (1984) was the first to consider this type of
sequential estimator in the GMM context.

To estimate j2 in the second step, the choice of weighting matrix will matter, however.
Indeed, given ĵ1 and a weighting matrix W 2T , we can find the solution to min h02T W 2T h2T

analytically:

ĵ2 ¼ ðD
0
22W 2T D22Þ

�1D022W 2T R̄, (45)

where Dij, i; j ¼ 1; 2, is the ði; jÞ block of DT , the 2ðN þ 1Þ � ðN þ 4Þ matrix of the
derivatives of hT ðjÞ with respect to the parameters. D22 is N � 2, D11 is ðN þ 2Þ � ðN þ 2Þ,
and D21 is N � ðN þ 2Þ. Following Ogaki (1993), the optimal weighting matrix is

W 2T ¼ ð½�D21D�111 IN � ST ½�D21D�111 IN �
0Þ
�1, (46)
11One can add moment conditions for the factor means to the GMM1 system. Under the assumption that the

factor model disturbances have zero mean conditional on the factors, the covariance matrix of the GMM

estimator will be block diagonal and so the covariance matrix of the lambdas will be unaffected. In this case, the

asymptotic covariance matrix of ĝa is obtained by adding the asymptotic covariance matrix of the factor sample

mean vector (the factor covariance matrix in the iid case) to the asymptotic covariance matrix of l̂a.
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where ST is a consistent estimator of the covariance matrix of moment conditions (44). We
call the associated estimator GMM2 in what follows. The asymptotic covariance matrix of
GMM2 is ðD022W 2T D22Þ

�1 and the GMM specification test is J2 ¼ T min h02T W 2T h2T , which
has a standard chi-squared distribution in the limit, with degrees of freedom N � 2.12

As Cochrane emphasizes, the Fama-MacBeth estimators can, like most estimators, be
embedded in the general GMM framework. (Though beyond the scope of this paper,
Proposition 1 can be extended to accommodate serial correlation and conditional
heteroskedasticity in the GMM framework using the delta method.) In the context of our
sequential GMM formulation, the OLS and GLS second-pass estimators are obtained by
letting the weighting matrix used in estimating f2 ¼ G equal the identity matrix or Ŝ,
respectively. Cochrane’s (2001) GMM formulation combines elements of each of our
GMM approaches. He starts with the moment conditions (32), but does not impose the
asset pricing restrictions on the alphas. Thus, the regression parameters are exactly
identified as the usual OLS estimates. For each asset, he then adds a separate moment
condition that corresponds to the expected return relation (2), and different weighting
matrices are considered in estimating G (he excludes the zero-beta rate for simplicity).
Although one can show that the matrix, S0, for this system is singular, the usual formula
delivers valid standard errors for the GLS case that Cochrane considers.13 We have also
verified numerically that the GLS estimator is the optimal GMM estimator for this system
in the sequential sense of Ogaki (1993).
Another way of bypassing the numerical difficulty of solving (34), as theoretically

justified by Newey (1985), is to obtain the optimal GMM estimator from the scoring
algorithm based on a known consistent estimator, such as second-pass OLS. This
estimator and the associated tests are not at all reliable, however. For example, with the
simulated data later in the paper, the empirical rejection rates are over 90% for a nominal
5% test, even when the sample size is 960. Similar problems have been found in latent
variable models by Zhou (1994). Therefore, this method will not be used here.

5. Simulations

In this section, we study the finite-sample properties of the various estimation
procedures and the associated tests for one-factor and three-factor pricing models. To
make our simulations realistic, we calibrate the parameters by using the most recent 40
years, January 1964–December 2003, of monthly returns on the well-known Fama-French
25 book-to-market and size portfolios, which are available from French’s website.14 In
addition, to see how the results vary with the number of assets and over different groups of
assets, we also calibrate the parameters using French’s 48 industry portfolios. Given the
model parameters, returns can be simulated for any sample size T. In the simulations that
follow, we draw 10,000 data sets for each scenario considered.
12Although we have not proved the existence of finite moments for GMM2, we doubt that there is a problem.

The moment conditions for GMM1 and GMM2 are quite different and, as we will see, so are their estimates.

Indeed, GMM2 tends to behave much more like the GLS estimator in simulations, as might be expected from

Eq. (45).
13Let v be any nonzero vector orthogonal to both a and b in (12.23) of Cochrane (2001) and consider the vector

ðv; 0;�vÞ. Pre-multiplying the moment conditions by the transpose of the vector ðv; 0;�vÞ yields 0, so the

covariance matrix S must be singular.
14We are grateful to Ken French for making this data available on his website.
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5.1. Under the null that asset pricing restrictions hold

Assume in this subsection that the asset pricing restrictions are true. In this case, the
expected returns on the N assets can be obtained from (2), given pre-specified risk premia,
with the other parameter values, the betas, and S obtained from time-series regressions
using the actual data. We set g0 ¼ 0:0833%, or 1% on an annualized basis. This can be
viewed as the differential between g0 and the riskless rate since the various quantities of
interest will be invariant to the level of expected returns and power will depend only on the
differential. In this context, the Sharpe-Lintner restriction amounts to the null g0 ¼ 0. To
examine the size of the t-ratio test under the null, we let g0 equal zero in the simulations.

We consider two scenarios for the number of factors, K ¼ 1 and 3. When K ¼ 1, the
excess return on the market index is used to calibrate the parameters with g1 ¼ 0:6667%
unless indicated otherwise. This value for g1 implies an annualized market risk premium of
8%. When K ¼ 3, the Fama-French book-to-market and size factors are used to calibrate
the parameters with risk premia set to g2 ¼ 0:3333% and g3 ¼ 0:1667% unless otherwise
noted.

The number of assets N is either 25 or 48. When N ¼ 25, we consider sample sizes
T ¼ 60; 120; 240; 360; 480, and 960. When N ¼ 48, we use the same T ’s except 60 to avoid
near-singularity of the simulated sample covariance matrices. Studies such as Fama and
French (1993) use sample sizes close to T ¼ 360. T ¼ 960 approximates the sample size of
a study that uses all data going back to the 1920s. Varying T is useful in understanding the
small-sample behavior of the tests and the validity of asymptotic approximations. For
now, the data-generating process is the standard multivariate normal distribution, while a t

distribution will be used later.
Consider first the case in which there is only one factor, K ¼ 1. Table 1 provides the

estimation results for the factor risk premium, g1. For each of the estimation methods, we
report the average estimate, ḡ1, then the percentage error, ðḡ1 � g1Þ=g1, and finally the root-
mean-square error (RMSE), the square root of

PM
m¼1ðĝ

ðmÞ
1 � g1Þ

2=M with M ¼ 10; 000. We
begin by discussing the results for N ¼ 25 shown in the upper portion of Table 1.

Amsler and Schmidt (1985) note that when T is small, the maximum likelihood
estimator is extremely volatile across simulations. We find this as well for the different test
portfolios we consider. The ML results reported in the tables reflect truncation, as
discussed earlier. Without truncation, the RMSE for the estimator of g1 is theoretically
unreliable. Nevertheless, it is of interest to examine its value in the given simulation, which
is 6.4 (13% bias) when T ¼ 60, as compared to 1.12 (�8% bias) in Table 1. Truncation has
little impact when T ¼ 120 and no effect for larger values of T. These are much longer
samples than the six years examined by Amsler and Schmidt, but modest in relation to
typical applications. GLS and GMM2 perform the best in terms of RMSE, with truncated
ML (henceforth simply ML) not far behind when T is at least 240. With a sample size as
large as T ¼ 960, all five of these estimators have about the same RMSE.

When N ¼ 25 and T is at least 360, all methods have negative but fairly small percentage
errors, implying that the estimators are slightly biased downward. This is expected for the
two-pass estimators, given the well-known errors-in-variables (EIV) problem relating to
estimation of the betas. Consistent with Proposition 4 and the positive value of g1, the
average ML estimate across simulations exceeds the average GLS estimate. For example,
when T ¼ 360 the average is 0.664 for ML and 0.615 for GLS. As expected, the magnitude
of the difference decreases as the sample size increases. When T ¼ 120 or greater, ML has
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Table 1

Market risk premium estimates in a one-factor model

The table reports the average estimate, its percentage error, and root-mean-square error (all in percent) over

10,000 simulated data sets. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the asset pricing restrictions are

H0 : E½Rt� ¼ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, and N is the number of assets. The true value for the factor risk premium is g1 ¼ 0:6667% and the

zero-beta intercept is g0 ¼ 0:0833%. The estimation methods are the OLS, WLS, and GLS versions of the (Fama-

MacBeth) two-pass regression methodology, ML (truncated maximum likelihood), and GMM2 (generalized

method of moments).

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

N ¼ 25

OLS 0.6189 0.6562 0.6404 0.6554 0.6574 0.6600

�7% �2% �4% �2% �1% �1%

(1.1830) (0.8629) (0.6295) (0.5041) (0.4490) (0.3114)

WLS 0.5920 0.6415 0.6340 0.6511 0.6530 0.6585

�11% �4% �5% �2% �2% �1%

(1.1445) (0.8427) (0.6190) (0.4953) (0.4423) (0.3070)

GLS 0.4508 0.5421 0.5905 0.6153 0.6282 0.6448

�32% �19% �11% �8% �6% �3%

(0.8332) (0.5867) (0.4300) (0.3492) (0.3056) (0.2153)

GMM2 0.4506 0.5424 0.5907 0.6152 0.6280 0.6449

�32% �19% �11% �8% �6% �3%

(0.8393) (0.5906) (0.4311) (0.3498) (0.3061) (0.2155)

ML 0.6148 0.6743 0.6610 0.6639 0.6652 0.6637

�8% 1% �1% �0% �0% �0%

(1.1241) (0.7206) (0.4753) (0.3730) (0.3212) (0.2206)

N ¼ 48

OLS 0.5818 0.6139 0.6372 0.6367 0.6553

�13% �8% �4% �4% �2%

(0.6173) (0.4595) (0.3865) (0.3369) (0.2409)

WLS 0.5954 0.6218 0.6423 0.6419 0.6586

�11% �7% �4% �4% �1%

(0.6058) (0.4516) (0.3773) (0.3288) (0.2348)

GLS 0.5087 0.5705 0.6042 0.6148 0.6433

�24% �14% �9% �8% �4%

(0.5492) (0.3862) (0.3185) (0.2784) (0.1961)

GMM2 0.5088 0.5703 0.6043 0.6148 0.6434

�24% �14% �9% �8% �3%

(0.5528) (0.3878) (0.3193) (0.2790) (0.1964)

ML 0.6793 0.6658 0.6716 0.6657 0.6697

2% �0% 1% �0% 0%

(0.7130) (0.4374) (0.3480) (0.2964) (0.2027)

J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–8656
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percentage errors of just 1% or less, the least among all the methods. The finding for ML
is in keeping with Shanken’s demonstration that the ML estimator has a desirable
N-consistency property, a sort of asymptotic unbiasedness, for fixed T. Panel B of Table 1
provides the results when N ¼ 48. The qualitative conclusions are essentially the same as
those for Panel A. Although the biases are minimal for ML, they are larger for the other
estimators. This could be due to higher residual variances for the 48 industry portfolios,
exacerbating the EIV problem.

Table 2 provides the estimation results on g0, the intercept in the expected return
relation. As was the case in estimating g1, GLS and GMM2 are the best estimators of g0 in
terms of RMSE, with ML close behind. Consistent with the EIV perspective, the biases in
the intercept are all positive for the two-pass estimators and for GMM2 as well. The
percentage biases are quite large, mainly due to the small magnitude of g0, as we discuss
below. As earlier, ML has the least bias, at most 5% in magnitude when TX240. To
conserve space, we do not report the simulation standard deviations of the estimates in
Tables 1 and 2. These are generally close to the RMSEs, however. For example, with
N ¼ 48 and T ¼ 240 the difference is about 0.015 for the GLS estimator of g0 despite the
large percentage bias of 110%.

Next, we examine the standard errors of the estimates. For each estimator, Table 3
provides the RMSE followed by the asymptotic standard error evaluated at the true
parameters, the average of the estimated asymptotic standard errors, and, finally, the root-
mean-square error of these estimated standard errors in parentheses. Results are given for
N ¼ 25 in Table 3a and N ¼ 48 in Table 3b. Notice that the standard errors for g0 and g1
happen to be similar in magnitude. These standard errors would be unaffected by changing
the value of g0, as the g0 estimates would be shifted by a fixed amount and the risk
premium estimates would be unchanged. It also follows that the percentage bias in
estimating g0 would decline if its true value were increased in the simulations.

There are several important observations to be made about the standard errors. First,
there is a tendency for the asymptotic standard errors of the OLS and WLS estimators to
be a bit greater than the RMSE when evaluated at the true parameter values, particularly
in small samples. However, the asymptotic standard errors decline when evaluated at the
second-pass estimates. In fact, this decline is observed for all estimators, though both
standard errors are consistently below the RMSE for ML. For example, with N ¼ 48 and
T ¼ 120, the OLS standard error for g0 drops from 0.57 to 0.50, which is less than the
RMSE of 0.53, whereas the standard errors for ML are 0.38 and 0.26, and RMSE is 0.58.

When TX360, the two asymptotic standard errors are fairly close to each other and to
the RMSE’s of the estimates for the second-pass GLS/GMM2 estimators of the risk
premium. The estimated second-pass GLS/GMM2 standard errors for the pricing
intercept display more downward bias, however. The estimated ML standard errors have
the worst bias; when T ¼ 360, the RMSE is understated by as much as 10% for g1 and
20% for g0, with N ¼ 48. The problem diminishes as T increases but would be of particular
concern if, contrary to typical practice, relatively short subperiods were to be used. Note
that GLS, ML, and GMM2 all have the same asymptotic standard errors when evaluated
at the true parameter values. Asymptotic equivalence is proven analytically for GLS and
MLE in Shanken (1992), but apparently extends to our sequential GMM estimator as well
when returns are iid normal.

Now we consider ‘‘t-ratio’’ tests of the null hypothesis that a given parameter, either g0
or g1, equals zero. All tests are two-sided, although one could argue for one-sided tests in a
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Table 2

Pricing intercept estimates in a one-factor model

The table reports the average estimate, its percentage error, and root-mean-square error (all in percent) over

10,000 simulated data sets. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the asset pricing restrictions are

H0 : E½Rt� ¼ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, and N is the number of assets. The true value for the factor risk premium is g1 ¼ 0:6667% and the

zero-beta intercept is g0 ¼ 0:0833%. The estimation methods are the OLS, WLS, and GLS versions of the (Fama-

MacBeth) two-pass regression methodology, ML (truncated maximum likelihood), and GMM2 (generalized

method of moments).

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

N ¼ 25

OLS 0.1339 0.0927 0.1075 0.0903 0.0939 0.0882

61% 11% 29% 8% 13% 6%

(1.0437) (0.7575) (0.5489) (0.4457) (0.3956) (0.2739)

WLS 0.1577 0.1053 0.1136 0.0945 0.0979 0.0896

89% 26% 36% 13% 18% 8%

(1.0241) (0.7465) (0.5428) (0.4393) (0.3916) (0.2715)

GLS 0.2973 0.2037 0.1572 0.1304 0.1220 0.1037

257% 144% 89% 56% 46% 24%

(0.7586) (0.4878) (0.3351) (0.2698) (0.2334) (0.1618)

GMM2 0.2971 0.2034 0.1569 0.1305 0.1220 0.1037

256% 144% 88% 57% 46% 24%

(0.7624) (0.4907) (0.3363) (0.2704) (0.2338) (0.1619)

ML 0.1338 0.0719 0.0869 0.0819 0.0850 0.0849

61% �14% 4% �2% 2% 2%

(0.9888) (0.5891) (0.3663) (0.2866) (0.2441) (0.1652)

N ¼ 48

OLS 0.1765 0.1344 0.1134 0.1121 0.0953

112% 61% 36% 34% 14%

(0.5312) (0.3865) (0.3221) (0.2793) (0.2001)

WLS 0.1614 0.1261 0.1082 0.1065 0.0918

94% 51% 30% 28% 10%

(0.5092) (0.3741) (0.3104) (0.2694) (0.1926)

GLS 0.2443 0.1754 0.1453 0.1325 0.1067

193% 110% 74% 59% 28%

(0.4687) (0.2966) (0.2360) (0.1997) (0.1380)

GMM2 0.2435 0.1754 0.1450 0.1324 0.1066

192% 111% 74% 59% 28%

(0.4704) (0.2976) (0.2365) (0.2002) (0.1382)

ML 0.0764 0.0816 0.0789 0.0824 0.0807

�8% �2% �5% �1% �3%

(0.5826) (0.3262) (0.2517) (0.2092) (0.1414)

J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–8658
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Table 3a

Standard error estimates in a one-factor model (N ¼ 25)

The table first reports the root-mean-square error of the g0 or g1 estimates over 10,000 independent simulations,

then the asymptotic standard error evaluated at the true parameter values, the simulation average of the estimated

asymptotic standard errors, and finally the root-mean-square error of the estimated standard errors in

parentheses. The data-generating process is the same as in Tables 1 and 2. The estimation methods are the OLS,

WLS, and GLS versions of the (Fama-MacBeth) two-pass regression methodology, ML (truncated maximum

likelihood), and GMM2 (generalized method of moments).

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Standard error on g0
OLS 1.0437 0.7575 0.5489 0.4457 0.3956 0.2739

1.1099 0.7848 0.5549 0.4531 0.3924 0.2775

0.9955 0.7428 0.5374 0.4424 0.3851 0.2736

(0.2253) (0.1183) (0.0614) (0.0410) (0.0313) (0.0158)

WLS 1.0241 0.7465 0.5428 0.4393 0.3916 0.2715

1.1022 0.7793 0.5511 0.4500 0.3897 0.2755

0.9998 0.7466 0.5397 0.4441 0.3867 0.2746

(0.2291) (0.1195) (0.0623) (0.0412) (0.0316) (0.0158)

GLS 0.7586 0.4878 0.3351 0.2698 0.2334 0.1618

0.6482 0.4583 0.3241 0.2646 0.2292 0.1620

0.4121 0.3703 0.2917 0.2468 0.2179 0.1580

(0.2462) (0.0983) (0.0408) (0.0247) (0.0173) (0.0079)

GMM2 0.7624 0.4907 0.3363 0.2704 0.2338 0.1619

0.6482 0.4583 0.3241 0.2646 0.2292 0.1620

0.4003 0.3663 0.2903 0.2460 0.2173 0.1578

(0.2569) (0.1017) (0.0418) (0.0253) (0.0177) (0.0080)

ML 0.9888 0.5891 0.3663 0.2866 0.2441 0.1652

0.6482 0.4583 0.3241 0.2646 0.2292 0.1620

0.4198 0.3735 0.2927 0.2472 0.2182 0.1581

(0.2407) (0.0966) (0.0404) (0.0245) (0.0172) (0.0079)

Standard error on g1
OLS 1.1830 0.8629 0.6295 0.5041 0.4490 0.3114

1.2584 0.8898 0.6292 0.5137 0.4449 0.3146

1.1554 0.8521 0.6135 0.5042 0.4384 0.3111

(0.2013) (0.1051) (0.0545) (0.0363) (0.0277) (0.0140)

WLS 1.1445 0.8427 0.6190 0.4953 0.4423 0.3070

1.2446 0.8801 0.6223 0.5081 0.4400 0.3112

1.1522 0.8503 0.6119 0.5029 0.4373 0.3103

(0.2056) (0.1063) (0.0553) (0.0365) (0.0281) (0.0140)

GLS 0.8332 0.5867 0.4300 0.3492 0.3056 0.2153

0.8703 0.6154 0.4351 0.3553 0.3077 0.2176

0.7087 0.5522 0.4114 0.3421 0.2993 0.2146

(0.1738) (0.0732) (0.0312) (0.0191) (0.0136) (0.0063)

GMM2 0.8393 0.5906 0.4311 0.3498 0.3061 0.2155

0.8703 0.6154 0.4351 0.3553 0.3077 0.2176

0.6949 0.5478 0.4100 0.3413 0.2988 0.2144

(0.1871) (0.0771) (0.0323) (0.0197) (0.0140) (0.0064)

ML 1.1241 0.7206 0.4753 0.3730 0.3212 0.2206

0.8703 0.6154 0.4351 0.3553 0.3077 0.2176

0.7135 0.5545 0.4121 0.3425 0.2996 0.2146

(0.1703) (0.0719) (0.0309) (0.0189) (0.0135) (0.0062)

J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–86 59
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Table 3b

Standard error estimates in a one-factor model ðN ¼ 48Þ

The table first reports the root-mean-square error of the g0 or g1 estimates over 10,000 independent simulations,

then the asymptotic standard error evaluated at the true parameter values, the simulation average of the estimated

asymptotic standard errors, and finally the root-mean-square error of the estimated standard errors in

parentheses. The data-generating process is the same as in Tables 1 and 2. The estimation methods are the OLS,

WLS, and GLS versions of the (Fama-MacBeth) two-pass regression methodology, ML (truncated maximum

likelihood), and GMM2 (generalized method of moments).

Methods T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Standard error on g0
OLS 0.5312 0.3865 0.3221 0.2793 0.2001

0.5699 0.4030 0.3291 0.2850 0.2015

0.5035 0.3754 0.3129 0.2738 0.1965

(0.0851) (0.0402) (0.0261) (0.0192) (0.0095)

WLS 0.5092 0.3741 0.3104 0.2694 0.1926

0.5500 0.3889 0.3175 0.2750 0.1944

0.4915 0.3666 0.3056 0.2673 0.1918

(0.0776) (0.0357) (0.0229) (0.0167) (0.0081)

GLS 0.4687 0.2966 0.2360 0.1997 0.1380

0.3822 0.2703 0.2207 0.1911 0.1351

0.2581 0.2241 0.1955 0.1746 0.1293

(0.1274) (0.0492) (0.0280) (0.0190) (0.0076)

GMM2 0.4704 0.2976 0.2365 0.2002 0.1382

0.3822 0.2703 0.2207 0.1911 0.1351

0.2532 0.2223 0.1944 0.1738 0.1290

(0.1321) (0.0509) (0.0289) (0.0196) (0.0079)

ML 0.5826 0.3262 0.2517 0.2092 0.1414

0.3822 0.2703 0.2207 0.1911 0.1351

0.2609 0.2251 0.1960 0.1749 0.1294

(0.1251) (0.0484) (0.0276) (0.0187) (0.0076)

Standard error on g1
OLS 0.6173 0.4595 0.3865 0.3369 0.2409

0.6916 0.4890 0.3993 0.3458 0.2445

0.6390 0.4670 0.3865 0.3370 0.2405

(0.0703) (0.0335) (0.0218) (0.0160) (0.0079)

WLS 0.6058 0.4516 0.3773 0.3288 0.2348

0.6742 0.4767 0.3892 0.3371 0.2384

0.6287 0.4591 0.3799 0.3311 0.2362

(0.0637) (0.0297) (0.0191) (0.0139) (0.0068)

GLS 0.5492 0.3862 0.3185 0.2784 0.1961

0.5636 0.3985 0.3254 0.2818 0.1993

0.4853 0.3677 0.3084 0.2706 0.1952

(0.0835) (0.0346) (0.0201) (0.0138) (0.0058)

GMM2 0.5528 0.3878 0.3193 0.2790 0.1964

0.5636 0.3985 0.3254 0.2818 0.1993

0.4792 0.3655 0.3071 0.2698 0.1949

(0.0895) (0.0365) (0.0212) (0.0145) (0.0061)

ML 0.7130 0.4374 0.3480 0.2964 0.2027

0.5636 0.3985 0.3254 0.2818 0.1993

0.4869 0.3683 0.3087 0.2708 0.1953

(0.0822) (0.0341) (0.0198) (0.0137) (0.0058)

J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–8660
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CAPM framework. The nominal size of the tests is set at 5% based on the asymptotic chi-
squared distribution of the squared ratios. Table 4a (Table 4b) provides both the actual
rejection rates under the null and the empirical power of the test when N ¼ 25 (N ¼ 48).
The traditional OLS test and the WLS test are well specified under the null in most cases.

In testing g0 ¼ 0, the rejection rates are often large relative to 5% for the efficient
estimators. Misspecification is greatest for the ML test and N ¼ 48, with rejection
probability 10% even when T ¼ 480. This is due, in part, to the high kurtosis of ML
(despite truncation) in the simulated data sets. Since the actual size of the tests often
Table 4a

T-ratio tests in a one-factor model ðN ¼ 25Þ

The table reports the empirical rejection rates over 10,000 simulated data sets of the t-ratio tests of the

hypothesis that g0 ¼ 0 or g1 ¼ 0. The nominal size of the test is set at 5% and empirical power is adjusted for size

distortions. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N ; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the asset pricing restrictions are

H0 : E½Rt� ¼ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, and N is the number of assets. The gamma values are set at g0 ¼ 0:0833% and g1 ¼ 0:6667% except

when the null value of 0 is imposed.

Tests T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Testing the null: g0 ¼ 0 when g0 ¼ 0

OLS 0.0587 0.0546 0.0535 0.0490 0.0564 0.0494

WLS 0.0429 0.0458 0.0468 0.0428 0.0518 0.0457

GLS 0.2842 0.1374 0.0879 0.0723 0.0684 0.0552

GMM2 0.2983 0.1419 0.0910 0.0744 0.0693 0.0547

ML 0.3808 0.2000 0.1159 0.0896 0.0792 0.0586

Power of testing the null: g0 ¼ 0 when g0 ¼ 0:0833%
OLS 0.0509 0.0522 0.0547 0.0553 0.0546 0.0623

WLS 0.0508 0.0516 0.0519 0.0556 0.0548 0.0607

GLS 0.0510 0.0537 0.0594 0.0606 0.0658 0.0812

GMM2 0.0529 0.0561 0.0590 0.0614 0.0685 0.0811

ML 0.3902 0.2049 0.1280 0.1068 0.1003 0.0950

Testing the null: g1 ¼ 0 when g1 ¼ 0

OLS 0.0483 0.0492 0.0534 0.0479 0.0569 0.0473

WLS 0.0277 0.0383 0.0462 0.0426 0.0531 0.0442

GLS 0.0769 0.0535 0.0550 0.0508 0.0497 0.0505

GMM2 0.0886 0.0578 0.0568 0.0505 0.0506 0.0503

ML 0.1840 0.1245 0.0874 0.0674 0.0641 0.0573

Power of testing the null: g1 ¼ 0 when g1 ¼ 0:6667%
OLS 0.0770 0.1186 0.1710 0.2526 0.2864 0.5777

WLS 0.0777 0.1220 0.1740 0.2661 0.2941 0.5899

GLS 0.0910 0.1627 0.2939 0.4248 0.5545 0.8605

GMM2 0.0826 0.1564 0.2878 0.4343 0.5472 0.8602

ML 0.2497 0.2776 0.3761 0.4872 0.5983 0.8683
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Table 4b

T-ratio tests in a one-factor model ðN ¼ 48Þ

The table reports the empirical rejection rates over 10,000 simulated data sets of the t-ratio tests of the

hypothesis that g0 ¼ 0 or g1 ¼ 0. The nominal size of the test is set at 5% and empirical power is adjusted for size

distortions. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the asset pricing restrictions are

H0 : E½Rt� ¼ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, and N is the number of assets. The gamma values are set at g0 ¼ 0:0833% and g1 ¼ 0:6667% except

when the null value of 0 is imposed.

Tests T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Testing the null: g0 ¼ 0 when g0 ¼ 0

OLS 0.0619 0.0555 0.0595 0.0560 0.0539

WLS 0.0550 0.0547 0.0547 0.0514 0.0510

GLS 0.2795 0.1410 0.1016 0.0889 0.0683

GMM2 0.2897 0.1458 0.1041 0.0891 0.0687

ML 0.3662 0.1715 0.1211 0.1005 0.0748

Testing the null: g0 ¼ 0 when g0 ¼ 0:0833%
OLS 0.0515 0.0543 0.0599 0.0573 0.0705

WLS 0.0518 0.0550 0.0613 0.0603 0.0699

GLS 0.0559 0.0610 0.0659 0.0716 0.0925

GMM2 0.0549 0.0618 0.0652 0.0708 0.0947

ML 0.0525 0.0608 0.0595 0.0694 0.0896

Testing the null: g1 ¼ 0 when g1 ¼ 0

OLS 0.0492 0.0534 0.0479 0.0569 0.0473

WLS 0.0383 0.0462 0.0426 0.0531 0.0442

GLS 0.0535 0.0550 0.0508 0.0497 0.0505

GMM2 0.0578 0.0568 0.0505 0.0506 0.0503

ML 0.1700 0.0960 0.0783 0.0723 0.0592

Testing the null: g1 ¼ 0 when g1 ¼ 0:6667%
OLS 0.1625 0.2694 0.3750 0.4982 0.7827

WLS 0.1753 0.2800 0.4023 0.5219 0.8002

GLS 0.1555 0.3360 0.4843 0.6126 0.9069

GMM2 0.1484 0.3348 0.4801 0.6166 0.9059

ML 0.3479 0.4446 0.5676 0.6739 0.9202

J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–8662
exceeds 5%, rejection rates under the alternative overstate the power of a 5% test. To
overcome this problem, we compute the empirical power by using the upper 95th percentile
of the 10,000 squared ratios simulated under the null. Although this is really an estimate of
the population percentile, it should result in a better indication of the actual power of the
test. In the limit, as T approaches infinity, power must approach one. However, even with
T ¼ 960, power is always less than 10% in the second panels of Tables 4a and 4b. Thus, we
conclude that the test would have virtually no power in typical applications when the
annualized value of g0 is only 1%, a plausible differential a priori in the context of the zero-
beta CAPM.
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When testing the risk premium hypothesis g1 ¼ 0, all of the tests except ML have
rejection rates close to 5% under the null. Again, ML tends to reject too often, though the
problem is not severe (rate o8%) when TX360. The power of the tests is substantial when
the annualized risk premium equals 8%, but does not exceed 0.5 until TX480. There are
some power differences across estimation methods, with tests based on the OLS and WLS
estimators exhibiting the lowest power and ML tests the highest.

It is interesting that the OLS version of the Fama-MacBeth method, used so extensively
in the literature, is clearly dominated in terms of precision and power by the estimation
methods that incorporate information about the covariance matrix of asset returns.
A common view, generally unstated, is that while GLS-type estimators surely dominate in
terms of asymptotic properties, the benefits will be lost when covariances have to be
estimated. Our results for the one-factor model do not support this view. Moreover, it is
surprising that adjusting the cross-sectional regressions for heteroskedasticity barely makes
any difference in terms of bias, precision, or power. (An advantage for WLS could emerge
when a large set of individual stocks or less-diversified portfolios is employed since
heteroskedasticity is likely to be greater; typical applications employ a relatively small
number of portfolios, however.) Next, we see whether these conclusions continue to hold
in the context of a multifactor model.

Consider now what happens when there are K ¼ 3 factors. As earlier, we set the
(truncated) ML estimates for all parameters equal to the GLS estimates when the
magnitude of the ML estimate of any risk premium is more than twice that of the GLS
estimate. Truncation is observed more often now, occurring a few times even when
T ¼ 960. Conclusions for the market risk premium estimators (results not shown) are
qualitatively similar to those based on the one-factor model, except for a decline in the
relative precision of ML. The variation in RMSE across estimators is less with the Fama-
French factors, however, and biases are generally larger (except ML).

Table 5 reports estimation results for the book-to-market premium. Once again, ML has
very little, if any, bias. GMM2 has the lowest RMSE, despite the fact that it is the most
biased estimator. Differences in RMSE are minor when N ¼ 25, except for the smallest
values of T . A bit more variation in RMSE is observed when N ¼ 48, ranging from 0.18
for GMM2 to 0.22 for OLS when T ¼ 360. Results for the size premium and the zero-beta
intercept (not shown) are similar to those for book-to-market.

We have also examined simulation results for standard errors and t-ratios in the three-
factor model. All of the findings are summarized, though only results for the market and
book-to-market premia are shown (Tables 6a and 6b). The rest are available on request. As
in Tables 3a and 3b, we find downward bias in the estimated standard errors for g0 using
GLS and GMM2, with the worst bias using ML. The estimated ML standard errors for g1
are too low as well, by as much as 15% when T ¼ 360, and the ML RMSE’s are
particularly high with N ¼ 25. The behavior of the t-ratios for g0 and g1 is also fairly
similar to that observed earlier. The estimated standard errors for the size and book-to-
market premia are generally quite close to the RMSE’s and to the true asymptotic values
for all estimators. Likewise, the tests for size and book-to-market premia are typically well
specified under the null, with GMM2 sometimes displaying a slight tendency to
underreject.

We now turn to tests of the maintained assumption of an exact linear relation between
expected return and beta, as given in (2). Tables 7 and 8 examine the actual size of the
various (nominal) 5% level tests of this linear specification for the one- and three-factor
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Table 5

B/M factor premium estimates in a three-factor model

The table reports the average estimate, its percentage error, and root-mean-square error (all in percent) over

10,000 simulated data sets. The data-generating process is the Fama-French three-factor (market, book-to-

market, size) regression model,

Rit ¼ ai þ bi1f 1t þ bi2f 2t þ bi3f 3t þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the asset pricing restrictions are

H0 : E½Rt� ¼ g01N þ g1b1 þ g2b2 þ g3b3,

where Rit is the return on asset i in period t, f jt is the realization of the jth factor in period t, T is the time-series

length, and N is the number of assets. The true values of the factor premia are g1 ¼ 0:6667%, g2 ¼ 0:3333%, and

g3 ¼ 0:1667%, and the zero-beta intercept is g0 ¼ 0:0833%. The estimation methods are the OLS, WLS, and GLS

versions of the (Fama-MacBeth) two-pass regression methodology, ML (truncated maximum likelihood), and

GMM2 (generalized method of moments).

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

N ¼ 25

OLS 0.3226 0.3259 0.3306 0.3312 0.3326 0.3328

�3% �2% �1% �1% �0% �0%

(0.4291) (0.3041) (0.2143) (0.1755) (0.1546) (0.1093)

WLS 0.3248 0.3267 0.3311 0.3315 0.3329 0.3330

�3% �2% �1% �1% �0% �0%

(0.4272) (0.3033) (0.2135) (0.1745) (0.1538) (0.1087)

GLS 0.3332 0.3305 0.3328 0.3333 0.3340 0.3335

�0% �1% �0% �0% 0% 0%

(0.4270) (0.3013) (0.2113) (0.1726) (0.1521) (0.1075)

GMM2 0.2488 0.2919 0.3142 0.3211 0.3249 0.3290

�25% �12% �6% �4% �3% �1%

(0.3391) (0.2705) (0.2003) (0.1665) (0.1480) (0.1061)

ML 0.3336 0.3309 0.3330 0.3335 0.3341 0.3335

0% �1% �0% 0% 0% 0%

(0.4278) (0.3017) (0.2114) (0.1727) (0.1522) (0.1075)

N ¼ 48

OLS 0.3400 0.3381 0.3378 0.3398 0.3349

2% 1% 1% 2% 0%

(0.3560) (0.2701) (0.2237) (0.1975) (0.1408)

WLS 0.3413 0.3382 0.3394 0.3390 0.3345

2% 1% 2% 2% 0%

(0.3317) (0.2472) (0.2044) (0.1781) (0.1261)

GLS 0.3214 0.3293 0.3319 0.3339 0.3320

�4% �1% �0% 0% �0%

(0.3368) (0.2404) (0.1975) (0.1714) (0.1213)

GMM2 0.2452 0.2915 0.3065 0.3151 0.3228

�26% �13% �8% �5% �3%

(0.2698) (0.2155) (0.1836) (0.1622) (0.1181)

ML 0.3326 0.3324 0.3331 0.3344 0.3319

�0% �0% �0% 0% �0%

(0.3659) (0.2550) (0.2060) (0.1771) (0.1234)
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Table 6a

Market risk and B/M premium standard error estimates ðN ¼ 25;K ¼ 3Þ

The table reports the root-mean-square error of the risk premium estimates over 10,000 independent

simulations, the asymptotic standard error evaluated at the true parameter values, the simulation average of the

estimated asymptotic standard errors, and the root-mean-square error of the estimated standard errors in

parentheses. The data-generating process is the same Fama-French three-factor (market, book-to-market, size)

regression model as in Table 5.

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Standard error on g1
OLS 0.8932 0.6954 0.5116 0.4225 0.3740 0.2709

1.0874 0.7689 0.5437 0.4439 0.3845 0.2719

0.8928 0.6857 0.5081 0.4219 0.3686 0.2643

(0.2214) (0.1061) (0.0513) (0.0340) (0.0253) (0.0129)

WLS 0.9145 0.7186 0.5316 0.4382 0.3890 0.2807

1.1330 0.8012 0.5665 0.4626 0.4006 0.2833

0.9271 0.7184 0.5352 0.4452 0.3893 0.2795

(0.2379) (0.1121) (0.0529) (0.0346) (0.0253) (0.0126)

GLS 0.9291 0.6524 0.4701 0.3867 0.3441 0.2446

0.9821 0.6944 0.4910 0.4009 0.3472 0.2455

0.7413 0.5943 0.4521 0.3792 0.3329 0.2406

(0.2525) (0.1118) (0.0487) (0.0302) (0.0216) (0.0099)

GMM2 0.7737 0.6061 0.4538 0.3780 0.3382 0.2423

0.9821 0.6944 0.4910 0.4009 0.3472 0.2455

0.7412 0.5918 0.4497 0.3772 0.3311 0.2393

(0.2533) (0.1136) (0.0500) (0.0312) (0.0224) (0.0104)

ML 1.2169 0.8425 0.5488 0.4284 0.3712 0.2549

0.9821 0.6944 0.4910 0.4009 0.3472 0.2455

0.7477 0.5992 0.4540 0.3802 0.3335 0.2408

(0.2479) (0.1093) (0.0480) (0.0299) (0.0214) (0.0099)

Standard error on g2
OLS 0.4291 0.3041 0.2143 0.1755 0.1546 0.1093

0.4333 0.3064 0.2167 0.1769 0.1532 0.1083

0.4266 0.3039 0.2158 0.1764 0.1528 0.1081

(0.0385) (0.0190) (0.0096) (0.0064) (0.0048) (0.0024)

WLS 0.4272 0.3033 0.2135 0.1745 0.1538 0.1087

0.4310 0.3048 0.2155 0.1759 0.1524 0.1077

0.4254 0.3029 0.2149 0.1756 0.1522 0.1076

(0.0384) (0.0190) (0.0096) (0.0064) (0.0048) (0.0024)

GLS 0.4270 0.3013 0.2113 0.1726 0.1521 0.1075

0.4259 0.3011 0.2129 0.1739 0.1506 0.1065

0.4197 0.2990 0.2123 0.1735 0.1503 0.1063

(0.0389) (0.0192) (0.0097) (0.0065) (0.0048) (0.0024)

GMM2 0.3391 0.2705 0.2003 0.1665 0.1480 0.1061

0.4259 0.3011 0.2129 0.1739 0.1506 0.1065

0.4316 0.3059 0.2164 0.1768 0.1530 0.1082

(0.0452) (0.0223) (0.0114) (0.0078) (0.0059) (0.0032)

ML 0.4278 0.3017 0.2114 0.1727 0.1522 0.1075

0.4259 0.3011 0.2129 0.1739 0.1506 0.1065

0.4197 0.2990 0.2123 0.1735 0.1503 0.1063

(0.0389) (0.0192) (0.0097) (0.0065) (0.0048) (0.0024)
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Table 6b

Market risk and B/M premium standard error estimates ðN ¼ 48;K ¼ 3Þ

The table reports the root-mean-square error of the risk premium estimates over 10,000 independent

simulations, the asymptotic standard error evaluated at the true parameter values, the simulation average of the

estimated asymptotic standard errors, and the root-mean-square error of the estimated standard errors in

parentheses. The data-generating process is the same Fama-French three-factor (market, book-to-market, size)

regression model as in Table 5.

Methods T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Standard error on g1
OLS 0.6542 0.5054 0.4246 0.3826 0.2762

0.8064 0.5702 0.4656 0.4032 0.2851

0.6611 0.5040 0.4244 0.3745 0.2720

(0.1562) (0.0748) (0.0483) (0.0353) (0.0172)

WLS 0.5820 0.4369 0.3681 0.3269 0.2348

0.6782 0.4796 0.3916 0.3391 0.2398

0.6047 0.4501 0.3750 0.3283 0.2357

(0.0863) (0.0391) (0.0246) (0.0179) (0.0086)

GLS 0.5891 0.4130 0.3400 0.2973 0.2112

0.6051 0.4279 0.3494 0.3026 0.2139

0.4966 0.3837 0.3241 0.2859 0.2076

(0.1129) (0.0477) (0.0283) (0.0195) (0.0084)

GMM2 0.5276 0.3966 0.3320 0.2914 0.2092

0.6051 0.4279 0.3494 0.3026 0.2139

0.4986 0.3841 0.3243 0.2860 0.2076

(0.1115) (0.0474) (0.0282) (0.0195) (0.0084)

ML 0.7517 0.4866 0.3808 0.3247 0.2211

0.6051 0.4279 0.3494 0.3026 0.2139

0.4993 0.3852 0.3250 0.2865 0.2079

(0.1106) (0.0465) (0.0276) (0.0191) (0.0082)

Standard error on g2
OLS 0.3560 0.2701 0.2237 0.1975 0.1408

0.4074 0.2881 0.2352 0.2037 0.1441

0.3761 0.2735 0.2259 0.1970 0.1408

(0.0387) (0.0193) (0.0129) (0.0096) (0.0048)

WLS 0.3317 0.2472 0.2044 0.1781 0.1261

0.3619 0.2559 0.2089 0.1809 0.1279

0.3549 0.2536 0.2077 0.1802 0.1277

(0.0211) (0.0103) (0.0069) (0.0051) (0.0025)

GLS 0.3368 0.2404 0.1975 0.1714 0.1213

0.3448 0.2438 0.1991 0.1724 0.1219

0.3226 0.2356 0.1945 0.1694 0.1208

(0.0291) (0.0125) (0.0078) (0.0056) (0.0026)

GMM2 0.2698 0.2155 0.1836 0.1622 0.1181

0.3448 0.2438 0.1991 0.1724 0.1219

0.3263 0.2379 0.1962 0.1709 0.1218

(0.0279) (0.0119) (0.0074) (0.0054) (0.0025)

ML 0.3659 0.2550 0.2060 0.1771 0.1234

0.3448 0.2438 0.1991 0.1724 0.1219

0.3233 0.2360 0.1947 0.1696 0.1209

(0.0285) (0.0122) (0.0076) (0.0055) (0.0025)
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Table 7

Specification tests in a one-factor model

The table reports the empirical rejection rates of the model specification tests over 10,000 simulated data sets.

The nominal size of the test is set at 5%. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N ; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the null hypothesis is the asset pricing restriction

H0 : E½Rt� ¼ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, and N is the number of assets. CST is the cross-sectional F-test of Shanken (1985), LRT is the

likelihood ratio test with Bartlett correction, and GMM2 is the generalized method of moments chi-squared test.

Tests T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

N ¼ 25

gOLS ¼ gGLS 0.0724 0.0523 0.0498 0.0529 0.0549 0.0517

CST-GLS 0.0450 0.0445 0.0513 0.0487 0.0491 0.0507

GMM2 0.0252 0.0390 0.0479 0.0470 0.0481 0.0499

CST-ML 0.0428 0.0419 0.0500 0.0473 0.0483 0.0500

LRT 0.0678 0.0595 0.0608 0.0605 0.0586 0.0594

N ¼ 48

gOLS ¼ gGLS 0.0804 0.0580 0.0560 0.0540 0.0533

CST-GLS 0.0484 0.0493 0.0551 0.0499 0.0495

GMM2 0.0264 0.0403 0.0512 0.0468 0.0497

CST-ML 0.0443 0.0479 0.0532 0.0486 0.0491

LRT 0.0791 0.0649 0.0681 0.0633 0.0634
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models, respectively. The rejection rates are based on simulations in which the expected
return relation holds, with the positive parameter values described earlier. The cross-
sectional tests both perform quite well for all models except when T is very small. GMM2
over rejects in tests of the three-factor model. The likelihood ratio test (LRT) displays a
more systematic tendency to over reject somewhat, with probabilities ranging from 0.06 to
0.09 when T ¼ 360. Finally, our univariate specification test based on the difference
between OLS and GLS estimators is fairly well specified for samples this large.

In addition to the multivariate tests, we have examined the traditional Fama-MacBeth
univariate test based on the t-ratio for an additional cross-sectional variable. This
experiment is conducted for N ¼ 25 under the CAPM null hypothesis. The additional
independent variable is taken to be the (time-series) average book-to-market ratio for
each portfolio, as reported in Fama and French (1993). The rejection rates (not shown)
are close to 5% for OLS and WLS at all sample sizes. The GLS test rejects too often in
small samples. The rejection rate declines to 6.5% for T ¼ 360, but is still 6% for T as
large as 960.

5.2. Results when the linear expected return model is misspecified

Like the asymptotic results on estimation in Shanken (1992) and Jagannathan and Wang
(1998), our simulations thus far have assumed that the linear expected return model is
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Table 8

Specification tests in a three-factor model

The table reports the empirical rejection rates of the model specification tests over 10,000 simulated data sets.

The nominal size of the test is set at 5%. The data-generating process is the Fama-French three-factor (market,

book-to-market, size) regression model,

Rit ¼ ai þ bi1f 1t þ bi2f 2t þ bi3f 3t þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the null hypothesis is the asset pricing restriction

H0 : E½Rt� ¼ g01N þ g1b1 þ g2b2 þ g3b3,

where Rit is the return on asset i in period t, f jt is the realization of the jth factor in period t, T is the time-series

length, and N is the number of assets. CST is the cross-sectional F-test of Shanken (1985), LRT is the likelihood

ratio test with Bartlett correction, and GMM2 is the generalized method of moments chi-squared test.

Tests T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

N ¼ 25

gOLS ¼ gGLS 0.1527 0.0754 0.0631 0.0561 0.0578 0.0484

CST-GLS 0.0421 0.0414 0.0475 0.0499 0.0485 0.0498

GMM2 0.0472 0.0556 0.0654 0.0671 0.0665 0.0659

CST-ML 0.0410 0.0394 0.0446 0.0479 0.0473 0.0492

LRT 0.0851 0.0760 0.0743 0.0750 0.0726 0.0695

N ¼ 48

gOLS ¼ gGLS 0.1058 0.0655 0.0570 0.0558 0.0551

CST-GLS 0.0481 0.0491 0.0523 0.0519 0.0498

GMM2 0.0406 0.0630 0.0705 0.0705 0.0727

CST-ML 0.0450 0.0446 0.0486 0.0491 0.0479

LRT 0.1014 0.0866 0.0885 0.0835 0.0803
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correctly specified. Now we allow for the possibility of deviations from the model. Of
course, there are many ways in which the expected return restriction could be violated. We
consider two cases of interest, both of which entail estimation and testing of a misspecified
zero-beta CAPM. In each case, pricing errors are added to the CAPM expected returns
with g0 ¼ 0:0833% and g1 ¼ 0:6667%, as earlier. When N ¼ 25, the pricing errors are
taken to be the Fama-French estimates of the excess-return alphas for the size/book-to-
market portfolios. When N ¼ 48, we randomly draw a CAPM deviation from a normal
distribution with mean zero and standard deviation 0:1667%, or 2% annualized. In each
case, the deviations are taken to be fixed over time and thus betas and covariance
parameters are unaffected.
As discussed in Section 2, with the Fama-MacBeth method, the implied coefficients in

the single-factor expected return relation are determined by projecting the true expected
return vector on the univariate beta vector and a constant vector. The projection varies
with the weighting matrix employed. For N ¼ 25, the true parameters under OLS, WLS,
and GLS are 1.03%, 0.76%, and 1.01%, respectively, for g0 and �0:06%, 0.14%, and
�0:25% for g1. Thus, introducing the Fama-French alphas largely eliminates the
correlation between expected returns and market betas. This is presumably driven by
the relatively high (low) betas and negative (positive) alphas of low (high) book-to-market
stocks. When N ¼ 48, the projection coefficients are g0 ¼ 0:22%; 0:28%; 0:52%, and
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Table 9

Standard error estimates in an alpha-based pricing error model

The table reports the root-mean-square error of the second-pass estimates for the single-factor model over

10,000 independent simulations, the asymptotic standard errors evaluated at the true parameter values, first

ignoring model misspecification and then taking it into account, and the corresponding simulation averages of the

estimated asymptotic standard errors. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N ; t ¼ 1; . . . ;T ,

with normally distributed residuals and factors, and the expected returns satisfy

E½Rt� ¼ aþ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, N is the number of assets, and a is an N-vector of pricing errors taken from Table 9a of Fama and

French (1993) with N ¼ 25. The risk premium parameters are fixed at g0 ¼ 0:0833% and g1 ¼ 0:6667%.

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Standard error on g0
OLS 1.0655 0.7695 0.5560 0.4517 0.3995 0.2780

1.1022 0.7794 0.5511 0.4500 0.3897 0.2755

1.1221 0.7935 0.5611 0.4581 0.3967 0.2805

0.9993 0.7456 0.5394 0.4440 0.3866 0.2746

1.0775 0.7799 0.5565 0.4559 0.3963 0.2805

WLS 1.0682 0.7761 0.5624 0.4556 0.4043 0.2821

1.0955 0.7746 0.5477 0.4472 0.3873 0.2739

1.1572 0.8183 0.5786 0.4724 0.4091 0.2893

0.9983 0.7434 0.5371 0.4418 0.3845 0.2730

1.1333 0.8121 0.5761 0.4713 0.4095 0.2895

GLS 0.7810 0.5155 0.3592 0.2925 0.2531 0.1773

0.6459 0.4567 0.3230 0.2637 0.2284 0.1615

0.7159 0.5062 0.3579 0.2923 0.2531 0.1790

0.4133 0.3704 0.2914 0.2463 0.2174 0.1576

0.6192 0.4783 0.3497 0.2881 0.2510 0.1783

Standard error on g1
OLS 1.2002 0.8702 0.6321 0.5070 0.4507 0.3144

1.2479 0.8824 0.6239 0.5094 0.4412 0.3120

1.2641 0.8939 0.6321 0.5161 0.4469 0.3160

1.1554 0.8521 0.6135 0.5042 0.4384 0.3111

1.2210 0.8806 0.6276 0.5140 0.4464 0.3160

WLS 1.1817 0.8651 0.6321 0.5068 0.4512 0.3156

1.2350 0.8733 0.6175 0.5042 0.4366 0.3088

1.2882 0.9109 0.6441 0.5259 0.4554 0.3220

1.1475 0.8450 0.6078 0.4993 0.4341 0.3080

1.2666 0.9052 0.6417 0.5249 0.4557 0.3222

GLS 0.8518 0.6058 0.4454 0.3647 0.3204 0.2259

0.8659 0.6123 0.4329 0.3535 0.3061 0.2165

0.9186 0.6496 0.4593 0.3750 0.3248 0.2297

0.7081 0.5509 0.4100 0.3408 0.2981 0.2136

0.8462 0.6285 0.4530 0.3719 0.3232 0.2292
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g1 ¼ 0:55%; 0:48%; 0:20%, for OLS, WLS, and GLS, respectively. In this case, the OLS
and WLS parameters are closer to the values used for the baseline CAPMmodel due to the
random nature of the pricing errors.
As expected, when we simulate the misspecified models, the average estimates (not

shown) approach the corresponding theoretical projection parameters as T increases. Less
clear is the impact of misspecification on the standard errors of the estimates. Table 9
reports, for N ¼ 25, the RMSE of each estimator followed by two sets of asymptotic
standard errors. The first set is evaluated at the true parameter values, first ignoring model
misspecification and then taking it into account. The second pair consists of the
corresponding simulation averages of the estimated asymptotic standard errors.
Interestingly, we find that the asymptotic adjustment for model misspecification increases
the standard errors, but minimally in this context. For example, when T ¼ 360, the
estimated standard error for the GLS estimator of g1 increases from 0.34 to 0.37. Similar
results (not shown) are obtained when N ¼ 48.
Tests of the linear expected return relation for N ¼ 25 and N ¼ 48 are reported in

Table 10. Since Shanken’s (1985) cross-sectional F-tests (CST’s) appear to have the
appropriate size based on the earlier analysis, the rejection rates for these tests can be
viewed as estimates of the power of a 5% test. We see that the multivariate CST’s have
substantial power against both alternatives when TX240. The power of the coefficient-
based test (which might be overstated slightly in small samples) is lower, particularly for
N ¼ 48.
Table 10

Specification tests in misspecified models

The table reports the empirical rejection rates of the model specification tests over 10,000 simulated data sets.

The nominal size of the test is set at 5%. The data-generating process is the same as in Table 9 except there are

now two specification for a. The first (N ¼ 25) is that in Table 9, referred to here as Fama-French (1993) pricing

errors. The second (N ¼ 48) allows a to be randomly drawn from a normal distribution with mean zero and

standard deviation 2% (annualized). The null hypothesis is the linear pricing restriction

H0 : E½Rt� ¼ g01N þ g1b1.

CST is the cross-sectional F-test of Shanken (1985), LRT is the likelihood ratio test with Bartlett correction, and

GMM2 is the generalized method of moments chi-squared test.

Tests T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

Fama-French (1993) pricing errors

gOLS ¼ gGLS 0.1698 0.2504 0.4575 0.6324 0.7636 0.9714

CST-GLS 0.1342 0.3758 0.8149 0.9660 0.9968 1.0000

GMM2 0.0765 0.3308 0.7958 0.9643 0.9959 1.0000

CST-ML 0.1303 0.3661 0.8123 0.9656 0.9968 1.0000

LRT 0.1770 0.4110 0.8242 0.9685 0.9971 1.0000

Randomly simulated pricing errors

gOLS ¼ gGLS 0.1524 0.2232 0.3146 0.3958 0.6832

CST-GLS 0.2458 0.6879 0.9215 0.9888 1.0000

GMM2 0.1417 0.6331 0.9071 0.9868 1.0000

CST-ML 0.2354 0.6847 0.9209 0.9886 1.0000

LRT 0.3048 0.7044 0.9254 0.9890 1.0000
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5.3. Conditional heteroskedasticity

Thus far, returns have been assumed to be distributed iid normal in our simulations.
Now we examine the sensitivity of estimation and test results to the joint normality
assumption. As Kan and Zhou (2003) show, a multivariate t-distribution with eight
degrees of freedom fits the data well. (Here, we refer to the unconditional distribution of
the data; exploring the behavior of conditional tests when the variance of returns is
allowed to change is an important topic that we hope to address in future work.) In
addition, under the t assumption, the residual variance depends on the factors, and so
contemporaneous conditional heteroskedasticity is introduced. We generate the data as
before, except that the joint normality assumption for the factors and returns is replaced
by the joint t assumption.

Table 11 reports estimation results for g1. The results are fairly robust to the assumed
conditional heteroskedasticity when TX360, but some small effects are observed. For
example, compared to Table 1, the GLS estimator is slightly more biased and its RMSE is
slightly higher in Table 11, while the OLS RMSE declines a bit for N ¼ 25. Also, the ML
estimator now has a negative bias, but it is less than 5% of the true value for reasonable
sample sizes. The cross-sectional F-tests of expected return linearity, which performed
quite well under homoskedasticity, continue to display the proper size (close to 5%) under
conditional heteroskedasticity (results not shown).

6. Application

The standard excess-return time-series formulation of the Fama and French (1993)
three-factor model constrains the alphas to equal zero, implicitly assuming that the zero-
beta rate equals the riskless rate and the factor risk premia equal the corresponding factor
means. As noted in Shanken and Weinstein (2006), the latter restriction is implied
whenever the factors are spread portfolio returns. It is well known that the constrained
model can be evaluated by the Gibbons, Ross, and Shanken (1989) (GRS) test or, if the
normality assumption is a concern, by methods that allow for conditional heteroskedas-
ticity, as in MacKinlay and Richardson (1991) and Shanken (1990). In this section, we
relax the usual pricing restrictions and apply the earlier cross-sectional regression methods
in an analysis of the Fama-French model. This can be likened, in some respects, to Fama
and MacBeth’s (1973) analysis of the original Sharpe-Lintner CAPM.

The empirical factor model is

Rit � rft ¼ ai þ bi1ðf M ;t � rftÞ þ bi2f SMB;t þ bi3f HML;t þ �it, (47)

where f M is the market return factor, f SMB is the small minus big (SMB) return spread,
f HML is the high minus low (HML) return spread, and rft is the 30-day T-bill rate. The Rit’s
are the test asset returns on the 25 stock portfolios formed on size and book-to-market.
The following asset pricing relation is of interest:

H0 : EðRit � rftÞ ¼ g0 þ g1bi1 þ g2bi2 þ g3bi3, (48)

where g1; g2, and g3 are the risk premium parameters, and g0 is the excess zero-beta rate.
Table 12 reports the results. The first column indicates which of the five estimation

methods is used. The next four columns provide estimation results for each of the risk-
return parameters. The point estimate is given with its standard error in parentheses, both
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Table 11

Market risk premium estimates under conditional heteroskedasticity

The table reports the average estimate, its percentage error, and root-mean-square error (all in percent) over

10,000 simulated data sets. The data-generating process is the standard market model,

Rit ¼ ai þ bi1f 1t þ �it; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T ,

with t-distributed residuals from a joint multivariate t-distribution of the returns and factor with eight degrees of

freedom, and the asset pricing restrictions are

H0 : E½Rt� ¼ g01N þ g1b1,

where Rit is the return on asset i in period t, f 1t is the realization of the market factor in period t, T is the time-

series length, and N is the number of assets. The true value for the factor risk premium is g1 ¼ 0:6667% and the

zero-beta intercept is g0 ¼ 0:0833%. The estimation methods are the OLS, WLS, and GLS versions of the (Fama-

MacBeth) two-pass regression methodology, ML (truncated maximum likelihood), and GMM2 (generalized

method of moments).

Methods T ¼ 60 T ¼ 120 T ¼ 240 T ¼ 360 T ¼ 480 T ¼ 960

N ¼ 25

OLS 0.5789 0.6090 0.6403 0.6582 0.6497 0.6600

�13% �9% �4% �1% �3% �1%

(1.0843) (0.8100) (0.5932) (0.4875) (0.4263) (0.3052)

WLS 0.5495 0.5901 0.6317 0.6497 0.6437 0.6575

�18% �11% �5% �3% �3% �1%

(1.0602) (0.8034) (0.5922) (0.4884) (0.4274) (0.3074)

GLS 0.4114 0.4914 0.5637 0.5961 0.6072 0.6354

�38% �26% �15% �11% �9% �5%

(0.8318) (0.5948) (0.4351) (0.3559) (0.3173) (0.2282)

GMM2 0.4351 0.5170 0.5842 0.6115 0.6198 0.6423

�35% �22% �12% �8% �7% �4%

(0.8715) (0.6209) (0.4458) (0.3618) (0.3213) (0.2298)

ML 0.5522 0.6105 0.6358 0.6477 0.6466 0.6562

�17% �8% �5% �3% �3% �2%

(1.0906) (0.7166) (0.4791) (0.3805) (0.3330) (0.2339)

N ¼ 48

OLS 0.5335 0.5898 0.6147 0.6273 0.6470

�20% �12% �8% �6% �3%

(0.6176) (0.4586) (0.3834) (0.3387) (0.2405)

WLS 0.5535 0.6051 0.6220 0.6343 0.6508

�17% �9% �7% �5% �2%

(0.6040) (0.4521) (0.3752) (0.3306) (0.2348)

GLS 0.4719 0.5466 0.5768 0.5963 0.6288

�29% �18% �13% �11% �6%

(0.5532) (0.3951) (0.3228) (0.2830) (0.2004)

GMM2 0.5036 0.5769 0.6033 0.6185 0.6417

�24% �13% �9% �7% �4%

(0.5773) (0.4062) (0.3296) (0.2878) (0.2022)

ML 0.6115 0.6354 0.6405 0.6463 0.6558

�8% �5% �4% �3% �2%

(0.6787) (0.4404) (0.3459) (0.2982) (0.2057)

J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–8672
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Table 12

Risk premium estimates in the Fama-French three-factor model

The table reports parameter estimates for the following model:

Rit � rft ¼ ai þ bi1ðf M;t � rftÞ þ bi2f SMB;t þ bi3f HML;t þ �it,

with

H0 : EðRit � rftÞ ¼ g0 þ g1bi1 þ g2bi2 þ g3bi3,

where f M is the return on the market factor, f SMB is the SMB spread return, f HML is the HML spread return, and

rft is the 30-day T-bill rate. The Rit’s are the test asset returns on the 25 stock portfolios formed on size and book-

to-market. The data are monthly from January 1964 to December 2003. The table first reports the restricted

estimates under the assumption that g0 ¼ 0. These are followed by cross-sectional estimates of the linear expected

return relation. The estimation methods, which do not impose factor portfolio constraints, are the OLS, WLS,

and GLS versions of the (Fama-MacBeth) two-pass regression methodology, ML (maximum likelihood), and

GMM2 (generalized method of moments). Standard errors of the estimates under H0 are given in parentheses and

those under model misspecification in brackets. All estimates and standard errors are in percent. The last column

reports tests of significance for the difference between the second-pass estimates and the restricted estimates, with

p-values in parentheses.

Methods g0 g1 g2 g3 Equality test

Imposing g0 ¼ 0 and the factor portfolio constraints

Sample averaging 0:45� 0.27 0:43�

(0.21) (0.15) (0.14)

Linear expected return model: unrestricted

OLS 1:42� �0:93� 0.23 0:46� 23.38

(0.32) (0.38) (0.15) (0.14) (0.01)

[0.36] [0.42] [0.15] [0.14]

WLS 1:44� �0:93� 0.24 0:43� 27.14

(0.34) (0.40) (0.15) (0.14) (0.00)

[0.36] [0.42] [0.15] [0.14]

GLS 1:60� �1:09� 0.26 0:43� 33.93

(0.29) (0.35) (0.15) (0.14) (0.00)

[0.32] [0.38] [0.15] [0.14]

GMM2 1:57� �0:99� 0.22 0:40�

(0.28) (0.35) (0.17) (0.15)

ML 1:85� �1:35� 0.26 0:43�

(0.29) (0.36) (0.15) (0.14)
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in percent. The last column contains, for each second-pass estimation method, a chi-
squared test of significance comparing the cross-sectional regression estimates of the risk-
return parameters to the usual time-series means (and g0 ¼ 0).

The first portion of Table 12 shows the sample mean of each factor over the period
1964–2003. The market and HML risk premia are significantly positive and the SMB risk
premium is marginally significant with a (two-sided) p-value of 7%. The rest of the table
shows the cross-sectional estimates when the 25 size and book-to-market portfolios are
used as the test assets and the g0s are unconstrained. All of the estimates of the market risk
premium, g1, are close to �1% per month or lower, while the zero-beta rates are about
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Table 13

Specification tests in the Fama-French three-factor model

The table reports the specification tests and their p-values in parentheses for the following model:

Rit � rft ¼ ai þ bi1ðf M;t � rftÞ þ bi2f SMB;t þ bi3f HML;t þ �it,

with

H0 : EðRit � rftÞ ¼ g0 þ g1bi1 þ g2bi2 þ g3bi3,

where f M is the return on the market factor, f SMB is the SMB spread return, f HML is the HML spread return, and

rft is the 30-day T-bill rate. The Rit’s are the test asset returns on the 25 stock portfolios formed on size and book-

to-market. The data are monthly from January 1964 to December 2003. The first column reports a test of

significance for the difference between the OLS and GLS second-pass estimates. CST is the cross-sectional F-test

of Shanken (1985), LRT is the likelihood ratio test with Bartlett correction, and GMM2 is the generalized method

of moments chi-squared test. GRS is the Gibbons, Ross, and Shanken (1989) joint test that the alphas are all zero.

gOLS ¼ gGLS CST-GLS CST-ML LRT GMM2 GRS

8.80 2.15 2.12 48.33 45.78 3.15

(0.07) (0.00) (0.00) (0.00) (0.00) (0.00)
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1 1
2
% or higher, both far from the constrained values. On the other hand, the size and

book-to-market premia are close to the sample means. A chi-squared test given in the last
column indicates that each set of second-pass estimates is jointly significantly different
from the constrained values at the 0.01 level or lower.
The risk premia estimates are fairly similar across estimation methods, as might be

expected if expected returns were indeed linear in the betas. However, the general
specification tests reported in Table 13 easily reject the null at the 1% level and the test for
equality of OLS and GLS projection coefficients is marginally significant. The numbers in
parentheses in Table 12 are the usual asymptotic standard errors, while those in brackets
take into account model misspecification. The differences are a little larger than we saw
earlier with K ¼ 1, but not big enough to materially change any of the inferences. For
example, when N ¼ 20, the OLS standard error for g1 increases from 0.38 to 0.42, but the
estimate is still significantly negative.
That the three-factor model can be rejected is not new. In particular, it is well known,

e.g., Fama and French (1996), that the small growth portfolio is a problem for the model.
Its alpha is about �45 basis points (bps) per month, contributing to the strong rejection by
the GRS test in Table 13. Although our less restrictive cross-sectional model is rejected as
well, it is of interest to assess the extent to which the model is improved by allowing for a
large zero-beta rate, as the data apparently prefer. The impact need not be large since the
(multiple regression) market betas of the portfolios tend to be close to one. Thus, the
impact of the low value of g1 can offset that of the high g0 estimate. The counterpart to
alpha, in the cross-sectional regression context, is the difference between the time-series
average of the portfolio excess returns and the model fitted expected return. The average
absolute value of this measure, across the 25 portfolios, is 8.9 bps for each of the second-
pass estimators, as compared to the average absolute alpha of 10.5 bps, a 15% reduction.
The small growth portfolio is still the biggest challenge, however, with estimated deviations
ranging from �32 to �37 bps.
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7. Conclusion

The Fama-MacBeth two-pass estimation method has been used time and again in testing
asset pricing models and analyzing the cross-section of expected returns. Yet there has
been surprisingly little analysis of its finite-sample distribution and performance relative to
other estimation procedures. These include maximum likelihood estimation and various
forms of the generalized method of moments. We provide analytic results that simplify the
computation of these alternative estimators and explore their properties, along with those
of the two-pass procedure, through extensive simulations. We also show that one natural
formulation of the GMM method turns out to be identical to ML estimation.

The ML estimator was originally proposed by Gibbons (1982) as a solution to the
errors-in-variables problem inherent in two-pass estimation. Shanken (1992) provided
some formal justification for this conclusion, though the early simulation results of Amsler
and Schmidt (1985) raised doubts about the finite-sample behavior of the ML estimator.
The recent insightful analysis of Chen and Kan (2004) reveals the analytic basis for the
erratic behavior of the ML estimator. In particular, they show that its mean does not exist.
Given this, we explore the properties of a truncated ML estimator, which involves
switching to the GLS version of the cross-sectional regression estimator when the
magnitude of the ML estimator of any risk premium gets too big, say more than twice that
of the GLS estimator.

A striking result is that, for sample sizes of 30 years or more, typical in applications, the
ML risk premia estimators are virtually unbiased in our simulations. This is true not just
for the single-factor CAPM simulations but for the Fama-French (1993) three-factor
model as well, whether the assets are the 25 Fama-French size and book-to-market
portfolios or 48 industry portfolios. The precision of the ML estimator, as measured by
root-mean-squared error, is typically close to or a bit lower than that of GLS, and both are
much more precise than OLS or WLS in CAPM simulations. However, OLS and WLS
tend to be less biased than GLS. The differences in estimation performance across methods
are more minor for the size and book-to-market factor premia.

When evaluated at the true parameter values, the average asymptotic standard errors for
the second-pass estimators are often greater than their RMSEs. However, the standard
errors always decline when the parameter estimates are used, as would be the case in
practice. The behavior of estimated standard errors has not, to our knowledge, been
examined previously, and that of the t-ratio for the hypothesis that the (excess) zero-beta
rate or risk premium is zero has received little attention (see, however, Chen, Kan and
Zhang, 1999). Here, ML does not perform very well, sometimes overstating precision by
perhaps 10–15% and rejecting true null hypotheses at twice the nominal 5% level when,
for example, 40 years of data are used. Though the estimators are less precise, inference
with OLS/WLS is fairly reliable in all scenarios studied here.

We also simulate tests of model specification and find that Shanken’s (1985) cross-
sectional F-test for expected return linearity consistently exhibits size close to the nominal
5% level considered, whereas the Bartlett-corrected likelihood ratio test sometimes rejects
a bit too much. With regard to misspecification, an innovative aspect of our paper is the
analysis of asymptotic and small-sample properties of Fama-MacBeth estimators when
exact linearity is violated. We find that standard errors are understated when
misspecification is ignored, by as much as 10% in one case, but generally less in the
examples examined.
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Although our comparison of estimation methods has suggested some important
regularities, different patterns might, of course, be observed with other factors or test
portfolios. Therefore, further analysis of a range of scenarios would be worthwhile. Since
no single estimation procedure dominates in all respects, it might be wise to explore
robustness of results to several estimation approaches in applied work. As we have shown,
comparison of OLS and GLS results can also serve as the basis for a formal test of model
specification. In our cross-sectional estimation of the Fama-French model, a very high
zero-beta rate and a significantly negative market risk premium are obtained regardless of
the method used.
Our limited simulations based on the multivariate t distribution allow for residual return

heteroskedasticity conditional on the factors. We observe some, but not too much,
sensitivity to this form of departure from normality. Exploring the impact of time-varying
ex ante volatility would be one natural direction for further research. Given that the ML
estimator tends to perform well overall, in terms of bias and precision, it would be
interesting to see whether more accurate standard errors and inferences can be obtained by
some sort of bootstrap procedure. The computational simplifications developed here
should be valuable in this context. Finally, although it will pose some computational
challenges in simulations, we also plan to explore the merits of incorporating a large
number of test portfolios or individual securities in cross-sectional analysis. Although this
is sometimes done in practice, little is known about the small-sample properties of the
estimators in this context, with the exception of recent work by Petersen (2005), who also
considers the serial correlation that arises in many corporate finance applications.

Appendix A

A.1. Proof of Proposition 1

Our proof follows Shanken (1992) closely, but accommodates model mispricing.
Inclusion of a vector of constant characteristics, as in Section 3.3 of that paper, poses no
additional complications. We derive the asymptotic distribution of Ĝ� Ḡ. The implied
asymptotic distribution for Ĝ� G can then be obtained as in (iii) of Shanken’s Theorem 1.
For notational brevity, in what follows we omit the dependence of G, etc., on W.
Averaging the factor regression model, Eq. (1), and using a ¼ EðRtÞ � bEðF tÞ, we have

R̄ ¼ X Ḡþ Zþ �̄, (A.1)

where

X ¼ ½1N ; b� and Ḡ ¼ ½g0; ḡ
0
a�
0, (A.2)

with ḡa ¼ ga þ F̄ � EðF tÞ. Letting U ¼ b̂� b, we can rewrite (A.1) as

R̄ ¼ X̂ Ḡþ ð�̄�U ḡaÞ þ Z. (A.3)

Premultiplying by Â ¼ ðX̂
0
ŴX̂ Þ�1X̂

0
Ŵ and noting that ÂX̂ ¼ IKþ1, we get

Ĝ� Ḡ ¼ Âð�̄�U ḡaÞ þ ÂZ. (A.4)

As AZ ¼ 0 by construction and Â converges to A, ÂZ converges in probability to zero as
T !1. Consistency then follows easily from Shanken (1992). Moreover, the asymptotic
covariance matrix of Ĝ� Ḡ is determined by the covariance matrix of the right-hand side
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of (A.4). There are three components. The first component, Uw � S�f , is the asymptotic
covariance matrix of Âð�̄�U ḡaÞ, obtained earlier by Shanken. The second component,
Uw1 þ U0w1, is the asymptotic covariance matrix between Âð�̄�U ḡaÞ and ÂZ, and the third
component, Uw2, is the asymptotic covariance matrix of ÂZ.

When Z ¼ 0, as in the earlier analysis by Shanken, error in estimating the covariance
matrix does not affect the asymptotic distributions of the second-pass WLS/GLS
estimators. To see this, note that the expression in parentheses in (A.4) has mean zero and
converges in distribution after multiplication by

ffiffiffiffi
T
p

. In this context, the effect of Â on the
asymptotic distribution amounts to multiplication by a constant matrix. The role of the
covariance estimator is more complicated when the model is misspecified. Using AZ ¼ 0,
we have X 0WZ ¼ 0, and hence

X̂
0
ŴZ ¼ ½0;U �0WZþ X̂

0
ðŴ �W ÞZ. (A.5)

Note that ÂZ equals the inverse of X̂
0
ŴX̂ times the expression in (A.5). Now, this inverse

acts as a constant matrix in the limit, as does X̂ in premultiplying the estimation error
in Ŵ .

Given the usual regression assumptions on the factor model, �̄ and U are orthogonal.
Imposing the conditional joint normality assumption on the disturbances, along with the
assumption on Ŵ , further ensures, by Lemma 1 of Shanken (1992), that �̄, U, and Ŵ are
mutually independent. In the OLS case, Ŵ ¼W ¼ I and hence the normality assumption
is not required. Although normality is sufficient to guarantee orthogonality between Ŵ

and the other components, this condition could be (approximately) true more generally. It
follows that

Uw1 ¼ �ðX
0WX Þ�1

0

lim EðTU 0WZg0aU 0Þ

 !
WX ðX 0WX Þ�1, (A.6)

where the limit is taken as T !1. Noting that

X̂
0
ðŴ �W ÞZ ¼ vec½X̂

0
ðŴ �W ÞZ� ¼ ðZ0 � X̂

0
ÞvecðŴ �W Þ, (A.7)

we have

Uw2 ¼ ðX
0WX Þ�1

0 0

0 lim EðTU 0WZZ0WUÞ

 !
þ ðZ0 � X 0ÞVwðZ� X Þ

" #
ðX 0WX Þ�1,

(A.8)

where V w is the asymptotic covariance matrix of vecðŴ Þ, which is zero in the OLS case.
In the GLS case, V w is, based on Siskind (1972), given by

ACovðŵij ; ŵklÞ ¼ s�iks
�
jl þ s�ils

�
jk, (A.9)

where s�mn is the ðm; nÞ element of S�1. Interestingly, the expression is of the same form as
that for Ŝ as given by Muirhead (1982, p. 20). Magnus and Neudecker (1979) provide an
alternative matrix expression for the covariance matrix of Ŝ. Given (A.9) and the fact that
S�1 is positive definite, their result can be applied here to obtain

Vw ¼ ðIN2 þ KN ÞðS�1 � S�1Þ, (A.10)
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where KN is the N2 �N2 commutation matrix such that KN vecðCÞ ¼ vecðC0Þ for any
N �N matrix C.15 Hence, using Theorem 3.1 of their paper, we have

ðZ0 � X 0ÞVwðZ� X Þ ¼ ðZ0S�1ZÞðX 0S�1X Þ þ X 0S�1ZZ0S�1X ðA:11Þ

¼ ðZ0S�1ZÞðX 0S�1X Þ, ðA:12Þ

where the second term vanishes because X 0S�1Z ¼ 0 by the GLS orthogonality condition.
In the WLS case, since Ŵ ¼ Ŝ

�1

d is diagonal, the nonzero elements of Vw must be of the
following form:

ACov
1

ŝii

;
1

ŝjj

� �
¼

2s2ij
s2iis

2
jj

, (A.13)

where smn is the ðm; nÞ element of S, and the right-hand side follows from the equation

1

ŝii

�
1

sii

� �
1

ŝjj

�
1

sjj

� �
¼
ðŝii � siiÞðŝjj � sjjÞ

ŝiisiiŝjjsjj

. (A.14)

To simplify further, let ĥ ¼ ðŴ �W ÞZ. Then the ith element of this N-vector is
Zið1=ŝii � 1=siiÞ, and so Eq. (A.7) implies that

ðZ0 � X 0ÞVwðZ� X Þ ¼ X 0½ACovðĥÞ�X ðA:15Þ

¼ X 0HX , ðA:16Þ

where the second equality follows from (A.13) and H is as defined in the proposition.
Finally, there are two useful identities,

E½Z0CZ0� ¼ S�1f C0S, (A.17)

E½Z0BZ� ¼ trðBSÞS�1f , (A.18)

where Z, N � K , is a random matrix (not to be confused with Z in Section 4) with E½Z� ¼ 0
and Cov½vecðZÞ� ¼ S�1f � S, and C and B are compatible matrices. The simple expressions
for the limiting values of Uw1 and Uw2, as given in (15) and (16), follow directly from these
two identities. In the GLS case, the orthogonality condition, X 0WZ ¼ 0, implies that
Uw1 ¼ 0.
To see why the identities hold, consider the first one. Let Zi be the ith column of Z and

Zn be its nth row. Then, EðZiZ
0
jÞ ¼ gijS, where gij is the ði; jÞ element of S�1f . Hence, the

ðk; nÞ element of Z0CZ0 is

EðZ0kCZn0 Þ ¼ E
XK

j¼1

XN

m¼1

zmkcmjznj ¼
XK

j¼1

XN

m¼1

gkjcmjsmn, (A.19)

where smn is the ðm; nÞ element of S. One can then verify directly that the right-hand side of
(A.12) is the ðk; nÞ element of the right-hand side of (A.10). The other identity can be
proved similarly. &
15We are grateful to an anonymous referee for pointing out the simplifications to our earlier expressions and for

providing the useful identities (A.17) and (A.18).
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A.2. Proof of Proposition 2

The key is to note that Eq. (A.4) holds for both the OLS and GLS estimators. Taking
the difference of the two equations yields the desired result under the null that Z ¼ 0. &

A.3. Proof of Proposition 3

Denote by Lc the log-likelihood function under the constraints (22),

Lcðl; b;SÞ ¼ �
NT

2
logð2pÞ �

T

2
log jSj

�
1

2

XT

t¼1

½Rt � l01N � b1ðf 1t þ l1Þ � � � � � bK ðf Kt þ lK Þ�
0S�1

� ½Rt � l01N � b1ðf 1t þ l1Þ � � � � � bK ðf Kt þ lK Þ�. ðA:20Þ

The usual unconstrained log-likelihood function is

Lu ¼ �
NT

2
logð2pÞ �

T

2
log jbSj �NT

2
. (A.21)

Following Shanken (1986), we can write the likelihood ratio for testing (22) as

LR ¼ T log½1þQðlÞ�; QðlÞ ¼
ð ~a� l01N Þ

0bS�1ð ~a� l01NÞ

1þ ðF̄ þ laÞ
0bD�1ðF̄ þ laÞ

, (A.22)

where la ¼ ðl1; . . . ; lK Þ
0, ~a ¼ â� l1b̂1 � � � � � lK b̂K , and F̄ and D are the sample mean and

covariance matrix of the factors. Moreover, maximizing the likelihood function under the
null is equivalent to minimizing LR, and hence the maximum likelihood estimator of
l0; l1; . . . ; lK is the solution to minimizing QðlÞ.

We begin by minimizing Q with respect to l0, since this parameter only enters the
numerator of Q. Conditional on la, the solution to this minimization amounts to a GLS
regression of ~a on 1N :

l0 ¼ ð10NbS�11NÞ
�110N

bS�1 ~a. (A.23)

Therefore, we only need to minimize

Q�ðlaÞ ¼
ðâ� � b̂

�
laÞ
0bS�1ðâ� � b̂

�
laÞ

1þ ðF̄ þ laÞ
0bD�1ðF̄ þ laÞ

, (A.24)

where â� ¼ â� ð10NbS�11NÞ
�1
ð10N
bS�1âÞ1N and b̂

�
¼ ðb̂

�

1; . . . ; b̂
�

K Þ with b̂
�

j ¼ b̂j �

ð10N
bS�11N Þ

�1
ð10N
bS�1b̂jÞ1N for j ¼ 1; . . . ;K . To solve (A.24) analytically, we express

Q�ðlaÞas

Q�ðlaÞ ¼
w0Aw

w0Bw
; w ¼

1

la

 !
, (A.25)

where A and B are defined in (26). The minimum of Q� is given by the smallest eigenvalue
of jA� zBj ¼ 0 (see, e.g., Anderson, 1984, p. 590). The rest follows from a transformation
of this equation. &
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A.4. Proof of Proposition 4

With K ¼ 1, we can simply write QðlÞ ¼ hðg0; g1Þ. By Proposition 3, the ML estimator of
g0 is given by

~gML
0 ¼ ð10N

bS�1R̄� ~gML
1 10N

bS�1b̂1Þ=ð10NbS�11N Þ. (A.26)

We want to show first that the ML estimator of g1, ~g
ML
1 , is one of the two roots of the

following quadratic equation:

Hðg1Þ ¼ ĝGLS
1 g21 � ðŝ

2
f � d1=dÞg1 � ŝ2f ĝ

GLS
1 ¼ 0, (A.27)

where

d1 ¼ det
10N
bS�11N 10N

bS�1R̄

R̄
0bS�11N R̄

0bS�1R̄

0@ 1A; d ¼ det
10N
bS�11N 10N

bS�1b̂1
b̂
0

1
bS�11N b̂

0

1
bS�1b̂1

0@ 1A. (A.28)

Plugging ~gML
0 into hðg0; g1Þ, we need only minimize

hðg1Þ ¼ R̄�
a

b
1N

� �
þ

c

b
1N � b̂1

� �
g1

h i0bS�1 R̄�
a

b
1N

� �
þ

c

b
1N � b̂1

� �
g1

h i.
ð1þ g21=ŝ

2
f Þ

¼ ðdg21 � 2ĝGLS
1 g1 þ d1Þ=½bð1þ g21=ŝ

2
f Þ�, ðA:29Þ

where a ¼ 10N
bS�1R̄, b ¼ 10N

bS�11N and c ¼ 10N
bS�1b̂1. Then, taking the first-order derivative

of hðg1Þ, it can be verified (though tedious) that h0ðg1Þ has the same sign as Hðg1Þ. It follows
that if ĝGLS

1 40, then h is initially increasing, then decreasing, and then increasing again,

with the same finite asymptotic values at plus or minus infinity. Hence, h achieves a global
minimum at the larger root of H in this case.

Now, to establish the inequality, let h ¼ f =g. Then, since h0ðg1Þ ¼ 0 at the ML estimator,

we have f =f 0 ¼ g=g0. This implies that f 0 and g0 must have the same sign at the ML

estimator. Because d40, f 0 must also be an increasing function of g1. Now if ĝGLS
1 40, it

follows from (A.27) that ~gML
1 a0. If ~gML

1 o0, we have f ð�~gML
1 Þ ¼ f ð~gML

1 Þ þ 4ĝGLS
1 ĝML

1 o
f ð~gML

1 Þ, a contradiction since ~gML
1 minimizes (A.29).Therefore, it must be the case that

~gML
1 40 whenever ĝGLS

1 40. Since g0 ¼ 2bg1=ŝ
2
f , we have g040 and hence f 040 at the ML

estimator if ĝGLS
1 40. The proposition then follows by noting that f 0ðĝGLS

1 Þ ¼ 0. &

A.5. Proof of Proposition 5

First, we rewrite the model in a more tractable form. Let

Y ¼
Y1

Y2

" #
¼

l1b
0
1 þ � � � þlKb

0
K

ðb1 � � � bK Þ
0

" #
, (A.30)

a ðK þ 1Þ �N matrix. The model residuals can then be written as a T �N matrix,

U ¼ R� l01T1
0
N � ZY; Z ¼ ½1T ;F1; . . . ;FK �, (A.31)

where Z is a T � ðK þ 1Þ matrix formed by the unit vector and T observations on the
factors.
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The key is to note that, conditional on g0, the null hypothesis imposes a rank K

restriction on Y, i.e.,

Y ¼ AB; A ¼
l0a
IK

" #
; B ¼

b01

..

.

b0K

2664
3775, (A.32)

where A is ðK þ 1Þ � K , B is K �N, and la ¼ ðl1; . . . ; lK Þ
0. Hence, the technique of Zhou

(1994) can be used to solve for A and B. &

A.6. Proof of Proposition 6

To simplify the proof, we show first that adding a constant vector to the factor
observations will reduce the GMM1 estimator of la by the same amount. This is clearly
true for the maximum likelihood method as the constrained likelihood function will be
unchanged by the two offsetting shifts. But this is not obvious for GMM1 because both the
weighting matrix and the instruments (factors) change with the shifts, and so the impact on
the objective function requires further analysis.

To prove the claim, consider the re-ordered GMM moment conditions,

g�T ðyÞ ¼
1

T

XT

t¼1

Zt � Et ¼
1

T

XT

t¼1

ðZt � ½ðRt � l01NÞ � bðF t þ laÞ�Þ, (A.33)

and the associated weighting matrix W ¼W �
T ¼W 2 �W 1 with W 2 ¼ ðZ

0Z=TÞ�1. Using
the identity

Zt � bðFt þ laÞ ¼ ½ZtðFt þ laÞ
0
� IN �b, (A.34)

where b ¼ vecðbÞ, we can write the moment conditions as a quadratic function of b

conditional on l0 and la,

g�T ðyÞ ¼
1

T

XT

t¼1

Zt � EtðyÞ ¼ y� xb, (A.35)

where

y ¼
R̄� l01N

1
T

PT
t¼1F t � ðRt � l01N Þ

 !
; x ¼

ðF̄ þ laÞ
0bDþ F̄ F̄

0
þ F̄l0a

 !
� IN . (A.36)

To carry out the matrix multiplications in what follows, it is necessary to write y in a more
tractable form. Because

Ft � ðRt � l01NÞ ¼ Ft � ðRt � R̄Þ þ F t � ðR̄� l01N Þ ðA:37Þ

¼ ðFt � F̄ Þ � ðRt � R̄Þ þ F̄ � ðRt � R̄Þ þ F t � ðR̄� l01N Þ, ðA:38Þ

we have

1

T

XT

t¼1

F t � ðRt � l01N Þ ¼
1

T

XT

t¼1

ðFt � F̄ Þ � ðRt � R̄Þ þ F̄ � ðR̄� l01N Þ. (A.39)
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Hence, using the identity ðFt � F̄ Þ � ðRt � R̄Þ ¼ vec½ðRt � R̄ÞðFt � F̄ Þ0� and the definition
for b̂, we obtain

1

T

XT

t¼1

ðFt � F̄ Þ � ðRt � R̄Þ ¼
1

T

XT

t¼1

vec½ðRt � R̄ÞðF t � F̄ Þ0� ¼ vecðb̂bDÞ, (A.40)

which implies that

y ¼
R̄� l01N

ðbD� IN Þb̂þ F̄ � ðR̄� l01N Þ

 !
; NðK þ 1Þ � 1. (A.41)

Now, it is easy to verify that

W 2 ¼
1

T
Z0Z

� ��1
¼

1þ F̄
0bD�1F̄ �F̄

0bD�1
�bD�1F̄ bD�1

 !
, (A.42)

and hence

x0W ¼ x0ðW 2 �W 1Þ ¼ ðla IK Þ �W 1, (A.43)

and

x0Wx ¼ ½bDþ ðF̄ þ laÞðF̄ þ laÞ
0
� �W 1. (A.44)

The GMM objective function can be decomposed into three terms,

QGMMðyÞ ¼ ðy� xbÞ0W ðy� xbÞ ¼ y0Wy� 2y0Wxbþ b0x0Wxb. (A.45)

Eq. (A.44) implies that the last term will be invariant to the offsetting shifts. By (A.41), we
can write y as

y ¼ y1 þ y2 ¼
0N�1

ðbD� INÞb̂

 !
þ

1

F̄

� �
� ðR̄� l01N Þ. (A.46)

Then, from (A.43) and (A.46), we have

y0Wx ¼ b̂
0
ðbD�W 1Þ þ ðF̄ þ laÞ

0
� ½ðR̄� l01N Þ

0W 1�, (A.47)

i.e., the second term of (A.45) is also invariant to the shifts. Similarly, one can verify that
y0Wy ¼ y01Wy1 þ 2y01Wy2 þ y02Wy2 is invariant too, and so the claim follows.
Given the claim, we can assume F̄ ¼ 0 in the remainder of the proof. Maximizing the

objective function over b, we obtain, from standard regression theory, that

QGMMðyÞ ¼ Qðl0; laÞ ¼ ðy� xb�Þ0W ðy� xb�Þ ¼ y0½W �Wxðx0WxÞ�1x0W � y,

(A.48)

where b� ¼ ðx0WxÞ�1x0Wy. To finish the proof, we need only show that Qðl0; laÞ is the
same as the objective function of the maximum likelihood method, Eq. (23), when
W 1 ¼ Ŝ

�1
. With F̄ ¼ 0, it can easily be verified that the inverse of (A.44) is

ðx0WxÞ�1 ¼ bD�1 � bD�1lal
0
a
bD�1

1þ l0abD�1la

 !
�W�1

1 , (A.49)
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and so

W �Wxðx0WxÞ�1x0W ¼
½1; �l0abD�1�0½1; �l0abD�1� �W 1

1þ l0abD�1la

. (A.50)

As y ¼ vec½R̄� l01N ; b̂bD� from (A.40), we have, using identity vecðABCÞ ¼

ðC0 � AÞvecðBÞ,

ð½1;�l0abD�1� �W
1=2
1 Þy ¼ vecðW

1=2
1 ½R̄� l01N ; b̂bD�½1;�l0abD�1�0Þ ðA:51Þ

¼W
1=2
1 ðR̄� l01N � b̂laÞ. ðA:52Þ

Therefore,

Qðl0; laÞ ¼ y0½W �Wxðx0WxÞ�1x0W �y ¼
ðR̄� l01N � b̂laÞ

0W 1ðR̄� l01N � b̂laÞ

1þ l0abD�1la

.

(A.53)

This proves the proposition. It also shows that, for an arbitrary W 1, the GMM1 estimator
can be solved analytically similar to the approach for ML in A.3, as long as
W 2 ¼ ð

1
T

Z0ZÞ�1.

A.7. GMM2: the multifactor case

When there are multiple factors, there are two cases of interest. The first case is simpler
and assumes that the asset pricing restrictions are expressed in terms of univariate betas,
that is,

E½Rt� ¼ g01N þ g1
covðRt; f 1Þ

s21
þ � � � þ gK

covðRt; f K Þ

s2K
, (A.54)

where s2j is the variance of the jth factor and bj ¼ covðRt; f jÞ=s
2
j is the vector of betas from

the univariate regressions of the components of Rt on f j. Then, as in (44), the sample
moment conditions are

E½htðjÞ� ¼ E

Rt � mr

F t � mf

ðf 1t � m1Þ
2
� s21

..

.

ðf Kt � mK Þ
2
� s2K

Rt � g01N �
PK

j¼1gj
ðRt�mrÞðf jt�mjÞ

s2
j

2666666666664

3777777777775
¼ 0. (A.55)

The sequential GMM estimator can be solved analytically in the same manner as before,
and the associated GMM theory provides asymptotic standard errors for the risk premium
estimators under general conditions. Jagannathan and Wang (1998) consider the case of
two-pass estimation with univariate betas and derive asymptotic standard errors under
conditional heteroskedasticity.
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Typical multifactor applications of the Fama-MacBeth methodology employ multiple

regression betas from time-series regressions of returns on the K factors. Sequential GMM
estimation in this case is a bit more complex. Recalling that ga ¼ ðg1; . . . ; gK Þ

0, the asset
pricing relation (2) can be written as

E½Rt� ¼ g01N þ Srf S�1f ga, (A.56)

where the multivariate-regression b matrix equals Srf , the covariance matrix between the
returns and the factors, times the inverse of Sf , the covariance matrix of the factors. To
obtain the sequential GMM estimator of G from (A.56), we modify the univariate
procedure in two ways. First, we add KðK þ 1Þ=2� K moment conditions,

E½ðf it � miÞðf jt � mjÞ � covðf it; f jtÞ� ¼ 0, (A.57)

to estimate the off-diagonal elements of Sf . Then, the last N moment conditions of (A.55)
are replaced by a sample analogue of (A.56),

E½Rt � g01N � SrftS�1f ga� ¼ 0, (A.58)

where Srft is the N � K matrix whose jth column is given by ðRt � mrÞðf jt � mjÞ for
j ¼ 1; . . . ;K . Given this set of moment conditions, it is readily seen that the sequential
GMM estimators of all the parameters except the gammas are given by their sample
analogues, while the gammas are estimated from (A.58), which can be explicitly solved,
yielding a formula similar to (45).
References

Amsler, C.E., Schmidt, P., 1985. A Monte Carlo investigation of the accuracy of multivariate CAPM tests.

Journal of Financial Economics 14, 359–375.

Anderson, T.W., 1984. An Introduction to Multivariate Statistical Analysis. Wiley, New York.

Balduzzi, P., Robotti, C., 2004. Mimicking portfolios, economic risk premia, and tests of multi-beta models.

Working paper. Federal Reserve Bank of Atlanta.

Bartlett, M.S., 1947. Multivariate analysis. Journal of the Royal Statistical Society 9 (Suppl.), 176–190.

Black, F., 1972. Capital market equilibrium with restricted borrowing. Journal of Business 45, 444–454.

Black, F., Jensen, M.C., Scholes, M., 1972. The capital asset pricing model: some empirical findings. In: Jensen,

M.C. (Ed.), Studies in the Theory of Capital Markets. Praeger, New York.

Breeden, D.T., 1979. An intertemporal asset pricing model with stochastic consumption and investment

opportunities. Journal of Financial Economics 7, 265–296.

Chen, R., Kan, R., 2004. Finite sample analysis of two-pass cross-sectional regressions. Working paper.

University of Toronto.

Chen, N., Kan, R., Zhang, C., 1999. A critique of the use of t-ratios in model selection. Working paper. University

of Toronto.

Cochrane, J.H., 2001. Asset Pricing. Princeton University Press, Princeton, NJ.

Easley, D., Hvidkjaer, S., O’Hara, M., 2002. Is information risk a determinant of asset returns? Journal of

Finance 57, 2185–2221.

Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial

Economics 33, 3–56.

Fama, E.F., French, K.R., 1996. Explanations of asset pricing anomalies. Journal of Finance 51, 55–84.

Fama, E.F., French, K.R., 1998. Taxes, financing decisions, and firm value. Journal of Finance 53, 819–843.

Fama, E.F., MacBeth, J., 1973. Risk, returns and equilibrium: empirical tests. Journal of Political Economy 71,

607–636.

Gibbons, M.R., 1982. Multivariate tests of financial models: a new approach. Journal of Financial Economics 10,

3–27.



ARTICLE IN PRESS
J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–86 85
Gibbons, M.R., Ross, S.A., Shanken, J., 1989. A test of the efficiency of a given portfolio. Econometrica 57,

1121–1152.

Grinstein, Y., Michaely, R., 2005. Institutional holdings and payout policy. Journal of Finance 60, 1389–1426.

Hansen, L.P., 1982. Large sample properties of the generalized method of moments estimators. Econometrica 50,

1029–1054.

Harvey, C.R., Kirby, C.M., 1995. Analytic tests of factor pricing models. Working paper. Duke University,

Durham, NC.

Harvey, C.R., Zhou, G., 1993. International asset pricing with alternative distributional specifications. Journal of

Empirical Finance 1, 107–131.

Jagannathan, R., Wang, Z., 1998. An asymptotic theory for estimating beta-pricing models using cross-sectional

regression. Journal of Finance 53, 1285–1309.

Jagannathan, R., Wang, Z., 2002. Empirical evaluation of asset pricing models: a comparison of the SDF and

beta methods. Journal of Finance 57, 2337–2367.

Jobson, J.D., Korkie, B.M., 1982. Potential performance and tests of portfolio efficiency. Journal of Financial

Economics 10, 433–466.

Kan, R., Zhou, G., 1999. A critique of the stochastic discount factor methodology. Journal of Finance 54,

1221–1248.

Kan, R., Zhou, G., 2003. Modeling non-normality using multivariate t: implications for asset pricing. Working

paper. Washington University, St. Louis, MO.

Kandel, S., 1984. The likelihood ratio test statistic of mean-variance efficiency without a riskless asset. Journal of

Financial Economics 13, 575–592.

Kandel, S., Stambaugh, R., 1995. Portfolio inefficiency and the cross-section of expected returns. Journal of

Finance 50, 157–184.

Kimmel, R., 2003. Risk premia in linear factor models: theoretical and econometric issues. Working paper.

Department of Economics, Princeton University.

Lewellen, J., Nagel, S., Shanken, J., 2006. A skeptical appraisal of asset-pricing tests. Working paper. NBER.

Lintner, J., 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital

budgets. Review of Economics and Statistics 47, 13–37.

Litzenberger, R.H., Ramaswamy, K., 1979. The effect of personal taxes and dividends on capital asset prices:

Theory and empirical evidence. Journal of Financial Economics 7, 163–195.

Lo, A., MacKinlay, A.C., 1990. Data snooping biases in tests of financial asset pricing models. Review of

Financial Studies 3, 431–468.

MacKinlay, A.C., Richardson, M.P., 1991. Using generalized method of moments to test mean-variance

efficiency. Journal of Finance 46, 511–527.

Magnus, J.R., Neudecker, H., 1979. The commutation matrix: some properties and applications. Annals of

Statistics 7, 381–394.

Merton, R.C., 1973. An intertemporal capital asset pricing model. Econometrica 41, 867–887.

Muirhead, R.J., 1982. Aspects of Multivariate Statistical Theory. Wiley, New York.

Newey, W.K., 1984. A method of moments interpretation of sequential estimators. Economic Letters 14, 201–206.

Newey, W.K., 1985. Generalized method of moments specification testing. Journal of Econometrics 29, 229–256.

Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation

consistent covariance matrix. Econometrica 55, 703–708.

Ogaki, M., 1993. Generalized method of moments: econometric applications. In: Maddala, et al. (Eds.),

Handbook of Statistics, vol. 11. North-Holland, Amsterdam, pp. 455–488.

Petersen, M., 2005. Estimating standard errors in finance panel data sets: comparing approaches. Working paper

11280. NBER, Cambridge, MA.

Roll, R., 1985. A note on the geometry of Shanken’s CSR T2 test for mean/variance efficiency. Journal of

Financial Economics 14, 349–357.

Ross, S.A., 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory 13, 341–360.

Rubinstein, M., 1976. The valuation of uncertain income streams and the pricing of options. The Bell Journal of

Economics 7, 407–425.

Shanken, J., 1985. Multivariate tests of the zero-beta CAPM. Journal of Financial Economics 14, 327–348.

Shanken, J., 1986. Testing portfolio efficiency when the zero-beta rate is unknown: a note. Journal of Finance 41,

269–276.

Shanken, J., 1987. Multivariate proxies and asset pricing relations: living with the roll critique. Journal of

Financial Economics 18, 91–110.



ARTICLE IN PRESS
J. Shanken, G. Zhou / Journal of Financial Economics 84 (2007) 40–8686
Shanken, J., 1990. Intertemporal asset pricing, an empirical investigation. Journal of Econometrics 45, 99–120.

Shanken, J., 1992. On the estimation of beta-pricing models. Review of Financial Studies 5, 1–33.

Shanken, J., Weinstein, M., 2006. Economic forces and the stock market revisited. Journal of Empirical Finance

13, 129–144.

Sharpe, W., 1964. Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance

19, 425–442.

Siskind, V., 1972. Second moments of inverse Wishart-matrix elements. Biometrika 59, 690–691.

Stambaugh, R.F., 1982. On the exclusion of assets from tests of the two-parameter model: a sensitivity analysis.

Journal of Financial Economics 10, 237–268.

Velu, R., Zhou, G., 1999. Testing multi-beta asset pricing models. Journal of Empirical Finance 6, 219–241.

Zhou, G., 1994. Analytical GMM tests: asset pricing with time-varying risk premiums. Review of Financial

Studies 7, 687–709.


	Estimating and testing beta pricing models: Alternative methods and their performance �in simulations
	Introduction
	OLS, WLS, and GLS two-pass procedures
	Model, estimation, and tests
	Estimation under the alternative

	The maximum likelihood approach
	The GMM approach
	Simulations
	Under the null that asset pricing restrictions hold
	Results when the linear expected return model is misspecified
	Conditional heteroskedasticity

	Application
	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	GMM2: the multifactor case

	References


