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This article provides an exact Bayesian frame
work for analyzing the arbitrage pricing the
ory (APT). Based on the Gibbs sampler, we show 
how to obtain the exact posterior distributions 
for functions of interest in the factor modeL In 
particular, we propose a measure of the APT 
pricing deviations and obtain its exact posterior 
distribution. Using monthly portfolio returns 
grouped by industry and market capitalization, 
we find that there is little improvement in reduc
ing the pricing errors by including more factors 
beyond the first one. 

As an important extension of the asset pricing model 
of Sharpe (1964) and Lintner (1965), Ross (1976, 1977) 
derived the arbitrage pricing theory (APT) which 
addresses a fundamental problem in finance: to char
acterize the expected return on a security. The APT 
implies that the expected return is approximately a 
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linear function of the risk premiums on systematic factors in the econ
omy. Subsequently, there have been both a large theoretical liter
ature extending the APT and a large empirical literature testing its 
implications. 1 

There are mainly two testing approaches that have been applied 
to the empirical study of the APT. Traditional factor analysis is the 
first approach. Burmeister and McElroy 0991), among others, tested 
nonlinear restrictions of the APT in the factor model. In most studies, 
a likelihood ratio test is used. In order to obtain it, one has to esti
mate the parameters under nonlinear restrictions, which is difficult to 
accomplish in practice. As a result, it is difficult to obtain the asymp
totic distribution of the likelihood ratio test. 2 Given that the test has 
an asymptotic x2-distribution, it remains unclear whether or not the 
asymptotic inference is reliable in the sample size commonly used. 
The second approach is a two-pass procedure. Chen (1983), Connor 
and Korajczyk (1988), Lehmann and Modest (1988), Roll and Ross 
(1980), and many others developed this procedure. In the first pass, 
either the factor loadings or the factors are estimated. Then, in the sec
ond pass, the regression of the returns on the estimated loadings or 
the factors is estimated. Treating the estimates as the true variables, the 
APT restrictions become linear constraints (implying zero-intercepts) 
on the regression coefficients in the multivariate regression and hence 
can be tested by using standard methods. However, this procedure 
suffers an errors-in-variables problem, because the estimated rather 
than the actual factor loadings or factors are used in the second pass 
tests. As known in the errors-in-variables literature, ignoring the un
certainty of the estimates can potentially lead to incorrect inference. 

This article provides an exact statistical framework for analyzing the 
APT. There are at least two interesting aspects of our approach. First, 
our approach is a one-step procedure that is consistent with the return 
generating process. Given the fact that there are unobservable factors 
in the return generating process, our procedure implicitly incorpo
rates this uncertainty into inference. As a result, there is no need to 
estimate separately either the factors or the factor loadings to infer the 
validity of the APT. Second, our approach makes it possible to exam
ine virtually any function of the parameters that possesses important 
economic interpretations. In particular, it provides the exact poste
rior density for a proposed measure of the APT pricing errors, which 
indicates how far the data deviates from the APT pricing equations. 

1 Connor and Korajczyk 0992) provide an excellent survey of the literature. 

2 As shown by Anderson and Arnemiya (1988), asymptotic distributions of the parameter estimates 
are very complex in the factor model, and the constrained estimates should be even more complex, 
making it difficult to analyze the likelihood ratio test and related asymptotic tests. 
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Exact inference is an important advantage of our approach over the 
existing approaches because the latter often do not have asymptotic 
distributions for functions of interest, and the asymptotic distributions 
may not be reliable in finite sample even if they become available. 

Our approach is Bayesian. With the problem in hand, it is very 
difficult to apply classical statistical analysis, and Bayesian inference 
becomes a natural choice. McCulloch and Rossi (1990, 1991) devel
oped a Bayesian analysis of the APT, whereas Harvey and Zhou (1990) 
and Shanken (1987a) proposed Bayesian tests for efficiency of a given 
portfolio. However, McCulloch and Rossi's approach remains a two
pass procedure in which the factors are extracted, before the Bayesian 
analysis starts, by using Connor and Korajczyk's (1988) asymptotic 
principal components (APC) approach. In contrast, our approach is 
a one-step procedure and is based on the Gibbs sampler. The Gibbs 
sampler permits us to obtain the exact posterior distributions for func
tions of interest in the factor model. In particular, this method makes 
it possible to provide exact posterior distributions for both the mea
sure of the APT pricing errors and measures of the systematic and 
idiosyncratic risks. 

This article is organized as follows. In the first section, the exact 
Bayesian framework is proposed. In the second section, the proposed 
approach is applied to portfolio returns grouped by both industry 
and size. The empirical results show that a one-factor model has a 
modest APT pricing error and there is little improvement in reducing 
the pricing errors by including more factors beyond the first one. 
Concluding remarks are offered in the final section. 

1. Methodology 
In this section, we examine first the APT restrictions and propose a 
measure quantifying the pricing deviations. Then, ignoring the identi
fication issue for simplicity, we show how to obtain the exact posterior 
moments for this measure of pricing errors and other functions of in
terest. Next, coming back to the identification problem, we show how 
to identify the factor model and how the earlier analysis can incorpo
rate the identification conditions imposed on the factor model. Then, 
we discuss how prior information may be utilized in the posterior 
analysis. Finally, we compare the proposed approach with the usual 
two-pass procedure. 

1.1 APT restrictions 
The basic APT model assumes that the returns on a vector of N assets 
are related to K pervasive and unknown factors by a K -factor model: 
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where 
ru = the return on asset i at time t, 
oti = E[ru], the expected return on asset i, 
.fkt = the k-th pervasive factor at time t, 
Ett = the idiosyncratic factor of asset i at time t, 
f3ik = the beta or factor loading of the k-th factor for asset i, 
N = the number of assets, and 
T = the number of periods. 

In what follows, it will be convenient for us to work with the vector 
form of the model: 

rt =a+ !3ft+ Et, (2) 

where rt is an N x 1 vector of returns, a, N x 1 ,  {3, N x K, ft and Et are 
defined accordingly. 1be standard assumptions on the factor model 
are 

where I: = diag(uf, ... , u'j.). In this article, as in most studies, we 
make the standard assumptions that Et and ft are independent and 
both follow multivariate normal distributions. 

Ross 0976, 1977) and many subsequent authors [e.g., Chamber
lain and Rothschild 0983)] have shown that the absence of riskless 
arbitrage opportunities implies an approximate linear relationship be
tween the expected asset returns and their risk exposures: 

as the number of assets satisfying Equation (1) tends toward infinity· 
where A.0 is the intercept of the pricing relationship (zero-beta rate) 
and Ak is the risk premium on the k-th factor (k = 1 ,  . . .  , K). Since 
unknown parameters f3iK and Ak enter into the constraints [Equation 
( 4)] by multiplication with one another, the constraints are nonlinear. 
Equation ( 4) is the implication of no asymptotic arbitrage, and similar 
approximate pricing relations can be obtained under much weaker 
conditions [Shanken 0992)]. In contrast, with the much stronger as
sumption of competitive equilibrium, Connor's 0984) equilibrium ver
sion APT replaces the approximation with an equality. 

Consider a measure of the pricing errors: 

(5) 

This is an average of the squared pricing errors across the assets. For 
the equilibrium version APT, Equation (4) is valid exactly, implying Q 
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is zero. For the asymptotic APT, Q converges to zero as the number 
of assets approaches infinity. However, for a given N, Q will not 
necessarily be small [Shanken (1992)]. Nevertheless, there are at least 
two theoretical reasons to examine the pricing errors in this case. First, 
conditional on an assumption about the multiple correlation between 
factors (proxies) and an equilibrium benchmark portfolio, Shanken 
(1987b) derived testable restrictions on the pricing deviaton for each 
individual asset, implying that Q should be small if the correlation 
is close to one. Second, Q provides information about the slope of 
the efficient frontier [Shanken 0992)]. Conditional on a and {3, the 
minimized average pricing error is 

fi = �a' [IN- {3*({3*'{3*) -1{3*'] a, (6 ) 

where {3* = (lN, {J) and lN is an N x 1 vector of ones.3 The sampling 
distribution of Q or Q2 is difficult to determine, whereas its exact 
posterior distribution can be easily constructed by using our proposed 
approach.4 

1.2 Bayesian inference 
To simplify the presentation, we ignore for the time being identifica
tion conditions for the factor model, but will incorporate them into the 
analysis in the next subsection. In a Bayesian framework, the param
eters are treated as random variables. In particular, the pricing error 
Q is a random variable. To characterize it, it is sufficient to find its 
posterior distribution. This distribution is analytically intractable, but 
the approach taken here allows one to determine the exact posterior 
distribution of Q numerically. It is then straightforward to assess the 
economic importance of the pricing errors. For example, if Q is found 
to have its posterior mass concentrated at 5 percent for monthly data, 
this implies the average pricing error is likely to be about 5 percent for 
monthly returns. Because, on the average, the asset returns are only 
about 1 percent for monthly data, we would regard the 5 percent 
average pricing error as too high, and so we would reject the APT 
restrictions. But if Q is found to have a concentration at 0.01 percent, 

3 Interestingly, Q, a measure of pricing deviations, is very similar in mathematical form to the non
centrality parameter of the Gibbons, Ross, and Shanken (1989) test. The term [IN-,8* (,8*' ,8*)-1 ,8*'1 
plays the role of their :E-1 

4 The approach also applies to the case where a riskless asset exists. In this case, J..0 must be equal 
to the (observable) riskless rate of return, and the minimized average pricing error is 

where 1N is an N-vector of ones. 
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for example, the pricing errors would be regarded as negligible from 
an economic perspective. As a result, we would then regard the APT 
as an adequate pricing model for the assets. 

Bayesian analysis transforms our prior belief into a posterior belief 
in light of the data. For simplicity, we consider a standard diffuse 
prior first and defer discussion of informative priors to Section 1.4. 
The standard diffuse prior has the following form: 

(7) 

where 1·1 represents the determinant of the variance-covariance matrix 
�. Let a} be the i-th diagonal element of�' then 1�1 = af · · · a'f. . 

Let R be a T x N matrix of asset returns observed over the T 
periods. Based on Bayes' rule, the joint posterior density function of 
the parameters, o:, {3, and �, is 

P(o:, {3, �)ex 1�1-112 j(Rio:, {3, �), (8) 

where j(Rio:, {3, �) is the density of the data conditional on the pa
rameters, or the likelihood function for the factor model [Equation 
(1)]. 

Denote all the parameters by (} and let g( 6) be a function of interest. 
The general task of Bayesian inference is to obtain the expected value 
of g((J) under the posterior density, 

E[g(6)] = { g(6)P(6)d6, 
le 

(9) 

where E> is the domain of 6. This poses at least two difficulties. First, 
an analytical evaluation of Equation (9) is intractable if not impossible. 
This is seen by noting that the inverse of the complex covariance ma
trix {3{3' + � enters into the posterior density. Second, although Kloek 
and van Dijk 0978) show that the standard Monte Carlo approach can 
be a solution to such a high dimensional integration problem, it is not 
an easy matter to implement it because the posterior density function 
is of unknown form, and hence it is difficult to draw samples from this 
density. Monte Carlo integration with importance sampling [Geweke 
(1989)] may be an alternative if an adequate importance density (a 
density function that approximates the posterior density well) can be 
found. However, it is not clear how the importance density may be 
constructed given the complexity of the posterior density in the factor 
model. Fortunately the Gibbs sampling-data augmentation approach 
can be used to sample from the posterior distribution. 

To explain the Gibbs sampling-data augmentation approach (Ap
pendix A provides another explanation in a simpler model), we ob-
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serve first that 

/(Ria, {3, �) = I /*(R, fla, {3, �) df, (10) 

where f denotes all the factors, and f*(R, fla, {3, �)is the joint prob
ability density of Rand f conditional on the parameters a, {3 and �. 
We wish to approximate: 

[g 
l JJJJ g(a, {3, �) 1�1-112 /*(R, fla, {3, �)df da d{3 d� 

E ( a, {3, :E)= JJJJ 1�1-112/*(R, fla, {3, �)dfda d{3 d� · 
(11) 

Suppose that we are able to draw samples from the conditional 
posterior density function for a, 

P(alf3, �. f, R) = /*(R, fla, {3, �)/I /*(R, fla, {3, �) da, 

and similarly from the other three conditional posterior density func
tions, P(f3la, �. f, R) and P(�la, {3, f, R), as well as from the condi
tional density P(fla, {3, �. R). It turns out that it is in fact easy to do 
this, as will soon be shown. Now suppose further that we were given 
a single draw from the full posterior density: 

p � f _ 

1�1-1/2/*(R, fla, {3, �) 
(a, {3, 

' 

)- J J f fl�l-112j*(R, fla, {3, �) dfdad{3d�· 

If we replace the value of a in this draw with a new value drawn 
from P(alf3, �. f, R), the new (a, {3, �.f ) must still be a draw from 
the full posterior distribution. If the value of {3 is then replaced with 
a draw from P(f31a, �. f, R), the new draw still comes from the full 
posterior distribution. Similarly, replacing � and fin succession with 
draws from their conditional posterior distributions, we are left with 
a value for (a, {3, �.f ) that is completely different from the original 
draw, but still comes from the full posterior distribution. The process 
may then be repeated, starting with a and proceeding through f. At 
the end of each repetition, the process yields a new draw from the 
full posterior distribution. 

This algorithm is unrealistic in assuming an initial draw of (a, {3, �. 
f )  from the full posterior distribution. Under fairly general conditions 
[Gelfand and Smith 0990) and Geman and Geman 0984)] the ini
tial draw may be replaced with any legitimate value for (a, {3, �.f ), 
and the sequence of draw just described will then converge in dis
tribution to the posterior distribution [Roberts and Smith 0992) and 
Tierney 0991)1. One such condition is that it be possible to move from 
any point in the support of (a, {3, �.f ) to any other point in exactly 
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one full iteration of the Gibbs sampling-data augmentation algorithm 
just described. That condition is satisfied here, and so the sequence 
of draw will converge to the posterior distribution. The numerical 
accuracy can be assessed based on Geweke Cl 991b). 

Thus we need only consider how to draw from the conditional 
distributions. The parameter vector formed by the i-th row of B = 

(o:, {3) has a multivariate normal distribution conditional on ai: ( 1 A A ) 
/(bilf, ai) ex exp -2af 

(bi -bi)'F'F (bi -bi) , (12) 

where F = (lr, f) is a T x (K + 1 )  matrix formed by a vector of ones 
and the factors, and hi is the classical OLS estimator of the regression 
coefficients. Because the regressions given f in the factor model are 
mutually independent, the conditional distribution of bi is indepen
dent ofbi (} =/= i) . Each diagonal element of� has an inverted gamma 
distribution conditional on bi: 

(13) 

where 

(14) 

and v = T is the degrees of freedom. Equivalently, vs;Jaf "' x 2 ( T) .  
Consider now how to draw f conditional on o:, {3, �.and the data. 

To do so, the probability distribution of f has to be specified. Con
sistent with Equations (2) and (3), f1 and r1 are jointly normally 
distributed:5 

Hence, the conditional samples of f at time t can be drawn from a 
multivariate normal distribution with mean 

(16) 

and covariance matrix 

(17) 

5 In the classical framework where a, {3, and E are treated as constant parameters, Equation (15) is 
the standard assumption necessary to facilitate the maximum likelihood estimation. This assump
tion is also used in applying the EM algorithm to factor analysis [see, e .g . ,  Lehmann and Modest 
(1988)] . 
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Because N is often far greater than K, it is computationally simpler to 
obtain the inversion of the N x N matrix [3[3' + � by using Woodbury's 
identity [see, e.g. , Seber (1 984, p. 520)] : 

({3{3' + �)-1 = �-1 - �-1 {3(I + [3'�-1 {3)-1 !3'�-1. (18) 

Since � is diagonal, its inversion is trivial to compute. So, only the 
inversion of I+ {3'�-1 {3, a K x K matrix, is needed to invert the N x N 
matrix [3[3' + �. 

1.3 Identification 
For pedagogical reasons, we have so far ignored the well-known iden
tification problem in the factor model. There are in fact two indeter
minacies of the parameters. First, the information is not enough to 
determine all of the parameters if the number of factors is greater 
than or equal to half the number of assets [Seber (1 984, p. 21 4)] . This 
is because the observable returns can determine only its mean and 
covariance matrix V, which are related to the parameters {3 and � by 

v = {3[3' + � (1 9) 

There are only N(N+1)/2 distinct elements ofV, but there are NK+N 
elements on the right-hand side. To determine those parameters, we 
must have N(N + 1 ) /2 ::: NK + N, or N ::: 2K + 1 .  For example, 
if there are N = 1 0  assets, and if no other restrictions are imposed 
on the parameters, we can only estimate a factor model up to four 
factors. 

Second, there is an indeterminacy of the factor rotation. For any 
K x K orthogonal matrix P, there is an equivalent factor model, 

(20) 

in which the new factors r; = Ff1 is a rotation of the old factors f1. 
The same moment conditions valid for the old factors are also valid 
for the new factors, that is, E[t;J = 0 and E[t;t;'l = I. Moreover, the 
factor loadings are also rotated. The new loadings are linked to the 
old ones through {3* = [3P' . Because these new factor loadings and 
factors give rise to the same distribution for the returns, they cannot 
be identified from the observed returns unless further restrictions are 
imposed. 

Because {3 has rank K, we assume, without loss of generality, that 
the first K rows of {3 are independent. Let {3K be the K x K matrix 
composed by the first K rows, then {3K is nonsingular. By a theorem in 
matrix theory [see, e. g. , Muirhead (1 982, p. 592), Theorem A9.8] , there 
exists a unique orthogonal matrix P such that {3K P' is a lower triangular 
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matrix with positive diagonal elements.6 Therefore, to identify the 
factor model, we assume in what follows that fJK is of the form 

0 
fJzz 

(21 ) 

where f3ii > 0, i = 1 ,  . . .  , K. This condition uniquely identifies the 
loadings and the associated factors. For example, we cannot identify 
the betas and factors by the returns data alone in a one-factor model, 
because both 

ru = ai + f3il .ht + E it 
and 

ru = ai + ( -f3il ) ( -.ht) + Eit 
imply the same data generating process, but they have different betas 
and factors. However, by restricting {31 1  > 0 in the one-factor model, 
we uniquely identify both the betas and the associated factors. 

Under the identification condition, all parameters, except for fJK 

and a1 , ... , aK, have exactly the same posterior distributions as be
fore. To draw fJK and a1, ... , aK from their new posterior distribu
tions, let b7 = ( ai, f3il , . . .  , f3ii) ', i = 1 ,  . . .  , K. Simple algebra shows 
that bi, . . .  , b� are independently multivariate normally distributed: 

j(b;jf, ai) oc exp (-� (b7 - h;)'F�Fi(b7 - h7)) , i = 1 , . . .  , K, 
2ai 

(22) 
where Fi is a T x i matrix consisting of the first i columns ofF, and b7 
is the OLS estimator of the regression of ri on (1 , .h., . . .  , .M. Because 
of the identification condition, draws from Equation (22) should be 
rejected7 if they violate f3ii > 0. Combining these conditional distri
butions with those in Section 1 .2, it is straightforward to evaluate the 
posterior means of functions of interest. 

1.4 Informative priors 
Only the diffuse prior has been used thus far in our Bayesian analysis. 
This prior represents no prior information or " ignorance" on a, {3, 

6 The orthogonal matrix P can be explicitly constructed as P = L _, {3K
, where L is the L matrix in 

the LU decomposition of the positive definite matrix {3
K 

f3'K (L is the lower triangular matrix such 
that LL' = {3K {3'K) .  

7 Our applications show that the fraction of samples being rejected is often less than 30 percent. A 
more effective, but more complex, approach is provided in Appendix B.  
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and :E. As a function of these parameters, the pricing error Q will also 
have a diffuse prior density. To induce an informative prior on Q, 
informative priors on o:, {3, and :E have to be utilized. Consider the 
following class of informative priors: 

(23) 

f3i "'N( f3oi• �oil), f3ii > 0, i = 1, . . .  , K, (24) 

(25 ) 

(26) 
where all variables with subscripts 0 (except a0D are constants, cho
sen to reflect our prior degrees of belief on the distributions of the 
parameters. For example, fioi represents our prior mean value for {3i , 
and �Oi measures how close the mass of f3i is to its mean. In Equation 
(23), aoi is defined by aoi = Ao + L�=l f3ikAk, where A.o, A.1 , . . .  , AK 
are chosen constants. This says that the prior distribution of ai is de
pendent on fli· In other words, the prior distribution of ai and f3i is 
specified jointly as a product of the marginal distribution of f3i and 
the distribution of ai conditional on f3i· In addition, the priors are 
assumed to be independent across i. 

Given the above priors on the model parameters, the prior distri
bution of Q is readily computed. By varying the constants such as IJoi, 
we obtain different prior distributions of Q which in turn reflect our 
varying degrees of prior beliefs on Q. The posterior distribution of Q 
will show how our priors are changed in light of the data. Clearly, 
this posterior distribution is straightforward to obtain if samples of o:, 

{3, and :E can be drawn from their posterior distributions. 
To draw o:, {3, and :E, we use again the Gibbs satnpler by drawing 

them from their conditional distributions. Based on our earlier analysis 
(Section 1.3), it is seen that the alphas can be drawn from a normal 
distribution: 

(27 ) 
whereai = <YJiaoi+YJoiai)/( YJi+YJoi), IJl i  = YJiYJad<YJi+YJoi), ai = L<rit
fln!Jt - · · · - f3iK.fK1)/ T and IJi = al / T. The remaining parameters 
can be drawn as follows: 
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where for i = 1 ,  . . .  , K, Var(/31) = (1/ �o1 + F;'F; Jo})-1, '/31 = Var(/31) 
((30tf �ot+F;'F;(3; Jal). F; is the F1 matrix without the first column, and A* {31 is the OLS estimator of the regression of (r1- at) on ( fi, . . .  , fi-t); 
and for i = (K + 1 ) , . . .  , N, Var(/31) = (1/�ot + F*'F* Jal)-1, 13; = 
Var({31)((30tf�ot + F*'F* 13; Jul), F* is the F matrix without the first col-A* umn, and /31 is the OLS estimator of the regression of (r1- at) on 
(fi, . . .  , /K). Finally, for i= 1 ,  . . .  , N, Vtt = Vot + T and sf1 = (vots51 + 
vsf)fvtt. 

1.5 A comparison with the two-pass procedure 
The two-pass procedure (reviewed briefly in the introduction) usually 
works as follows. In the first pass, either the factor loadings or the 
factors are estimated from the factor model [Equation (2)] . Then, in 
the second pass, a multivariate regression is run of the returns on the 
estimated loadings or the factors. The equilibrium version APT implies 
zero-intercepts of the multivariate regression, and this implication is 
often tested by using Gibbons, Ross, and Shanken's (1 989) (GRS) test. 

The most flexible two-pass procedure is the one developed by Con
nor and Korajczyk (1 986, 1 988), which is a cross-sectional approach 
that can be applied to a large number of assets to extract the factors. 
In contrast, our approach is a time series one that can only be applied 
to a relatively small number of assets. Specifically, N can be any large 
number on Connor and Korajczyk's framework, but it has to be less 
than or equal to T- K in our setting in order to estimate the (nonsin
gular) covariance matrix of the returns. However, most multivariate 
tests of the APT are carried out in the second step of the two-pass 
procedure, and it is also necessary to estimate the covariance matrix 
of the returns. As a result, most of the tests are eventually applied to 
a small number of assets (usually about 1 0). The errors-in-variables 
problem is often ignored, but this can potentially yield incorrect in
ference as known in the errors-in-variables literature. 

In analyzing a small number of assets, our approach suggests that 
it is possible to obtain exact inference that automatically recognizes 
the errors-in-variables problem. Furthermore, with as many as 1 00 as
sets, our simulations show that the proposed approach is still feasible, 
and capable of providing reliable inference.8 Therefore, the proposed 
approach should be a useful complement to Connor and Korajczyk's 
(1 986, 1 988) in the case where a relatively small number of assets 
(portfolios) are used to test the APT. 

8 With N = 100, T = 731, and K = 2, the simulation took about three days' CPU on a SUN 
SPARCstation 10. For a year after the publication of this article, a Fortran program of the simulation 
will be available from the second author through e-mail (zhou@zhoufin.wustl .edu) upon request. 
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2. Empirical Results 

In this section, we provide first the summary statistics of the data and 
then apply our methodology to obtain the pricing error of the APT 
in the U.S. equity market. To get additional insight, measures of the 
systematic and idiosyncratic risks are also provided. As a diagnostic for 
model fitting, we compare the regression of the returns on the market 
index with that on the factor extracted from the one-factor model, 
and we find that there is a gain in R2 by using the extracted factor. 
However, the diagnostic alone does not mean that the pricing error 
is small. It simply says that the extracted factor fits the returns data 
better than the market index. Because the pricing error is of primary 
interest, we examine it further by showing how its exact posterior 
density may vary under a class of informative priors. 

2.1 The data and summary statistics 
There are two sets of data. The first is the returns on the indus
try portfolios grouped by following Breeden, Gibbons and Litzen
berger (1 989), Ferson and Harvey 0 991), Gibbons, Ross, and Shanken 
(1 989), and Sharpe (1964) with raw data available from the Center for 
Research in Security Prices (CRSP) at the University of Chicago. There 
are 1 2  industries: petroleum, finance/real estate, consumer durables, 
basic industries, food/tobacco, construction, capital goods, transpor
tation, utilities, textiles/trade, services, and leisure. The returns are 
monthly from February 1 926 to December 1 986, a total of 61 years 
data (T = 731). For a comparison of results, we also use decile port
folios from the CRSP. This is our second data set, which is the monthly 
returns on market value sorted NYSE portfolio deciles varying from 
size 1 to size 1 0. 

Means, standard deviations, and autocorrelations of the data are 
presented in Table 1 .  The means range from 0.849 percent per month 
for the utilities industry (industry 9) to 1 . 1 18 percent per month for 
the consumer durables industry (industry 3). The lowest standard de
viation, a measure of the total industry risk, is found in the utilities 
industry, and the highest is found in the consumer durables industry. 
Although for both of these industries the high or low average returns 
are associated with their total industry risks, the petroleum industry 
(industry 1 )  has lower risk and higher return than the capital goods 
industry (industry 7). However, this is not in contradiction with fi
nancial theories. For example, the equilibrium version of APT asserts 
only that the high returns should be associated with their high sys
tematic risks, and the systematic risks are determined by the asset's 
exposure to the factors. As shown in Table 1 ,  there is some evidence 
of first-order autocorrelation in the returns. In the factor model, both 
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Table 1 
Means, standard deviations, and autocorrelations of asset returns 

Industry portfolio returns' 

Variable Mean Std. dev. Autocorrelation 
(percent) (percent) P1 Pz P3 P4 P12 Pz1 

Industry 1 1 .040 6.300 0.009 �0.020 -0.054 0.091 0.017 -0.010 
Industry 2 0.976 6.078 0.107 -0.049 -0.140 0.014 0.053 0.028 
Industry 3 1 .1 18 7.610 0.145 0.000 -0.114  0.010 -0.019 -0.014 
Industry 4 0.993 6.430 0. 1 1 1  0.010 -0.1 25 0.037 -0.018 0.031 
Industry 5 0.939 4.869 0.096 -0.027 -0.088 0.0 1 1  0 .025 -0.023 
Industry 6 0.892 7.1 17 0.161 0.045 -0.097 -0.019 -0.022 -0.002 
Industry 7 1.03 1 6550 0 . 1 1 7  0.001 -0.101 0.015 0.001 0.014 
Industry 8 0.868 7.785 0.144 -0.005 -0.158 -0.014 0.000 0.023 
Industry 9 0.849 4.837 0.149 -0.036 -0.134 0.000 -0.013 0.039 
Industry 10 0 931 6.178 0.132 -0.005 -0.071 0.008 -0.006 -0.016 
Industry 11 0.968 7.441 0.013 0.041 -0.003 0.055 0.047 -0.030 
Industry 1 2  0.994 7556 0.200 0.034 -0.075 -0.047 0.026 0.030 

Decile portfolio returns' 

Decile 1 1 .720 1 1 .440 0.158 -0.01 2  -0.079 -0.062 0 .082 0.030 
Decile 2 1 .489 9.786 0.156 0 .003 -0.090 -0.102 0.049 0 .029 
Decile 3 1 . 289 8.752 0 . 195 -0.003 -0.097 -0.085 0 .012 0.024 
Decile 4 1 . 281 8.068 0. 176 0.014 -0.106 -0.058 0.016 -0.014 
Decile 5 1 .207 7.590 0.146 0.005 -0.104 -0.049 0.009 0.008 
Decile 6 1 .200 7.331 0 . 163 0.002 -0.1 21 -0.032 0.000 0.0 1 1  
Decile 7 1.185 6 977 0.137 0 .026 -0.106 -0.009 -0.023 -0.009 
Decile 8 1 .008 6.516 0.123 0.0 1 1  -0.1 1 2  0 .006 -0.004 -0.004 
Decile 9 1 .044 6 234 0.098 -0.002 -0.133 0.021 0.007 0.005 
Decile 10 0.871 5 364 0.085 -0.015 -0.1 21 0.041 0.008 0.028 

1The industry groups are 1 � petroleum, 2 � finance/real estate, 3 � consumer durables, 4 � basic 
industries, 5 � food/tobacco, 6 � construction, 7 � capital goods, 8 �transportation, 9 �utilities, 10 � 
textiles/trade, 1 1  � services, and 12 � leisure . 

2These are returns on market value sorted NYSE monthly portfolio deciles compiled by the Center 
for Research in Security Prices (CRSP) at the University of Chicago. For both the industry and decile 
portfolios, the data is monthly from February 1926 to December 1986 (731 observations). 

the residuals and factors are assumed to be serially independent, and 
so are the returns. Nevertheless, the autocorrelation does not seem 
to be severe. Therefore, as is the case for most empirical studies, we 
adopt the working assumption that the returns are independent and 
identically distributed, and the K -factor model is well specified. 

For the decile portfolios, there is the well-known pattern that lower 
deciles tend to have large mean returns that are accompanied by 
large standard deviations. Generally speaking, small firms tend to have 
higher returns and, at the same time, are subject to more economic 
risks. In contrast to the industry returns, there are greater first-order 
autocorrelations which are concentrated largely in the low deciles. 
Nevertheless, this pattern does not seem to be severe. Similar to the 
industry returns, higher order autocorrelations die out very fast. 

To understand more about the data, Table 2 provides both the 
eigenvalues and sample correlation matrix from principal components 
analysis. The largest eigenvalue dominates other eigenvalues and the 
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difference between the largest eigenvalue, 0. 0431 , and the second 
largest one, 0.0022, is substantial. Moreover, the first eigenvalue ex
plains 81.81 percent of the total variation of returns, and the first four 
eigenvalues explain about 91 . 96 percent. Based on the asymptotic 
principal components analysis of Connor and Korajczyk (1 986, 1 993), 
the eigenvalues can be interpreted (asymptotically) as explaining the 
portions of the systematic risk in the factor model. If the number of 
factors is K, the eigenvalues excluding the K largest ones should be 
equal. However, it is difficult to determine whether a subset of the 
sample eigenvalues are significantly different from one another. As a 
result, we examine values of K from 1 to 4 in our Bayesian factor 
analysis of the APT restriction. This may be a reasonable choice given 
that the first four sample eigenvalues explain about 92 percent of the 
systematic risk. 

The decile portfolio returns have in general greater correlations 
than the industry returns. In addition, the first eigenvalue explains 
more than 92.84 percent of the variations, and the first four explain 
98.95 percent. There is relatively stronger evidence that a factor model 
with K from 1 to 4 should describe the returns. 

2.2 The APT pricing error 
Under the standard diffuse priors on all the parameters in the factor 
model, the posterior distribution of any function of interest is readily 
evaluated by using the methods discussed in Section 1 .3. The posterior 
mean of the pricing error is provided in Table 3. Panel A reports the 
results for the whole sample period, from February 1 926 to December 
1 986, whereas panels B and C report the results for the subperiods, 
from February 1 926 to June 1 956 and from July 1 956 to December 
1 986. 

Consider first the results for the whole sample period. For purposes 
of comparison, we examine the APT constraints starting from the case 
where there are no factors. In this case, K = 0 and the minimum pric
ing error Q is the average of the squared pricing errors across assets, 
where the pricing error for each individual asset is the deviation of 
its expected return from the average of all the expected returns. Re
call that Q is a random variable in a Bayesian framework. Both the 
posterior mean and standard deviation of Q are of interest, and they 
are, as reported in Table 3, 0 .2408 percent and 0.0536 percent, re
spectively. The mean seems small as compared with the magnitude 
of the expected returns, showing that there are small deviations in 
the expected returns across the industries, a fact reflected from the 
summary statistics in Table 1 .  To further assess the pricing error, we 
provide the 90 percent Bayesian confidence interval [0. 1 564 percent, 
0. 3233 percent] , which states that there is 90 percent probability that 



Table 2 
V1 Principal components analysis of the data ::;l ----J 
N "' 

Industry portfolio returns � 
Eigenvalues 

(;)· � 
4.312  0.217 0.177 0.141 0.098 0.083 0.064 0.057 0.043 0.031 0.026 0.023 � 

Correlation matrix � ;::! 
1.000 0.810 0.732 0.781 0.695 0.719 0.754 0.696 0.671 0.630 0.603 0.670 

"' ;::! 
0.810 1.000 0.880 0.895 0.883 0.865 0.879 0.835 0.859 0.830 0.740 0.848 " 

i=;• 
0.732 0.880 1.000 0.923 0.845 0.883 0.920 0.833 0.789 0.853 0.706 0.850 � 0.781 0.895 0.923 1.000 0.869 0.894 0.934 0.839 0.795 0.832 0.713 0.840 ;:: 
0.695 0.883 0.845 0.869 1.000 0.833 0.860 0.766 0.813 0.875 0.713 0.853 � 
0.719 0.865 0.883 0.894 0.833 1.000 0.893 0.806 0.761 0.824 0.724 0.846 � 

" 
0.754 0.879 0.920 0.934 0.860 0.893 1.000 0.836 0.781 0.838 0.731 0.860 "' 
0.696 0.835 0.833 0.839 0.766 0.806 0.836 1.000 0.731 0.740 0.699 0.809 \o 
0.671 0.859 0.789 0.795 0.813 0.761 0.781 0.731 1.000 0.753 0.695 0.763 

;::! 
1\.) 

0.630 0.830 0.853 0.832 0.875 0.824 0.838 0.740 0.753 1.000 0.674 0.850 ... 
0.603 0.740 0.706 0.71 3  0.713 0.724 0.731 0.699 0.695 0.674 1.000 0.741 � 0.670 0.848 0.850 0.840 0.853 0.846 0.860 0.809 0.763 0.850 0.741 1.000 

Decile portfolio returns 
--

Eigenvalues 
5.919 0.31 3  0.052 0.025 0.021 0.013  0.0 1 1  0.009 0.008 0.006 

Correlation mix 
1.000 0.956 0.931 0.908 0.888 0.870 0.846 0.8 1 1  0.796 0.716 
0.956 1 .000 0.970 0.960 0.948 0.934 0.913 0.886 0.870 0.801 
0.931 0.970 1.000 0.973 0.962 0.950 0.935 0.910 0.890 0.828 
0.908 0.960 0.973 1.000 0.979 0.972 0.964 0.946 0.925 0.867 
0.888 0.948 0.962 0.979 1 .000 0.982 0.974 0.961 0.948 0.894 
0.870 0.934 0.950 0.972 0.982 1.000 0.980 0.973 0.963 0.912 
0.846 0.913  0.935 0.964 0.974 0.980 1.000 0.981 0.969 0.927 
0.81 1 0.886 0.910 0.946 0.961 0.973 0.981 1.000 0.981 0.945 
0.796 0.870 0.890 0.925 0.948 0.963 0.969 0.981 1.000 0.960 
0.716 0.801 0.828 0.867 0.894 0.9 1 2  0.927 0.945 0.960 1.000 

The table provides the eigenvalues (multiplied by 100) of the sample correlation matrix for the monthly industry and decile returns, respectively. 
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Table 3 
Average pricing errors 

Industry returns (N = 1 2) Decile returns (N = 10) 

K Q Std. error 90o/o interval Q Std. error 90o/o interval 

Panel A: February 1926 to December 1986 (whole period) 

0 0.2408 0.0536 [0.1564, 0.33231 0.3520 0.0859 [0.2184, 0.50091 
1 0.1 184 0.0286 [0.0746, 0.16791 0.0845 0.0292 [0.0448, 0.13881 
2 0.1 169 0.0299 [0.0710, 0.1 6901 0.0649 0.0228 [0.0347, 0.10771 
3 0.1070 0.0283 [0.0624, 0.15581 0.0437 0.0127 [0.0244, 0.066o1 
4 0.0982 0.0273 [0.0557, 0.14581 0.0422 0.0130 [0.0234, 0.06581 

Panel B: February 1926 to june 1956 (subperiod) 

0 0.4237 0.0941 [0.2750, 0.58361 0.5499 0.1443 [0.3336, 0.80721 
1 0.2083 0.0485 [0.133 1 ,  0.29 161 0.1647 0.0573 [0.0865, 0.27151 
2 0.1767 0.0443 [0.1 100, 0.25401 0.1350 0.0387 [0.0769, 0. 20401 
3 0.1681 0.0426 [0.1019, 0.24211  0.1095 0.0283 [0.0672, 0.1 5941 
4 0.1 504 0.0445 [0.0812 ,  0.22751 0.0854 0.0241 [0.0391 ,  0 . 14361 

Panel C: july 1956 to December 1986 (subperiod) 

0 0.2807 0.621 2  [0.1836, 0.3871 1  0.3268 0.0731 [0.2 122 ,  0.45281 
1 0.1 693 0.03 17 [0.1 185, 0.22261 0.0854 0.0236 [0.0498, 0.1 2751 
2 0.1524 0.0334 [0.0910,  0.20861 0.0601 0.0183 [0.0325, 0.10041 
3 0.1302 0.0294 [0.0831 ,  0.17931 0.0467 0.0145 [0.0257, 0.08241 
4 0.1 273 0.0480 [0.0751 , 0.20511 0.0416 0.01 59 [0.0214, 0.08 1 1 1  

Let r11 b e  the return o n  asset i a t  time t .  Assume the K-factor model for the returns: 

r11 = a, +fJn.f1 1 + · · ·  + f3tx.fxt +Eit, i = 1 ,  . . .  , N, t = 1 ,  ... , T, 

where a, = E[r111 is the expected return on asset t, fi, the k-th pervasive factor at time 
t, E11 the idiosyncratic factor of asset i at time t, fJ,k the beta or factor loading of the 
k-th factor for asset i. The pricing error from the APT is measured by Q :;:: 0, where 

Q2 = i L:1 (a,- '-o- fJn'-1 - · · · - f3tx'-x)2 = ia'[IN - (3* ((3*'(3*)-1(3*'1a, Ao is the 
intercept of the APT pricing relationship, Ak is the risk premium on the k-th factor 
( k = 1 , . . .  , K), (3* = (1 N, (3), (3 is an N x K matrix of the factor loadings, and 1 N is 
an N x 1 vector of ones. The data are monthly industry and decile returns from February 
1926 to December 1986. With alternative assumptions on the number of factors, the table 
provides the posterior means, standard deviations, and the 90 percent Bayesian confidence 
intervals for Q (the results are multiplied by 100) over the whole sample period and its 
subperiods. 

the pricing error is in the interval. As there is not much difference 
between the mean and the values in the confidence interval, the pos
terior density of the average pricing error is concentrated heavily near 
its mean. This may be interpreted as evidence of the informativeness 
of the data on the pricing errors. 

In a one-factor model, the mean pricing error is 0. 1 184 percent, 
the standard deviation is 0 . 0286 percent, and the 90 percent Bayesian 
confidence interval is [0. 0746 percent, 0 .1679 percent] . The mean pric
ing error is much smaller than the average sample mean returns of 
the assets, 0. 9666 percent. This indicates that the deviation of the ex
pected returns from the risk premiums multiplied by the factor load-
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ings (including the constant) is just about 1 0  percent of the magnitude 
of the expected returns. However, in comparison with the previous 
Q = 0.2408 percent in a zero-factor model, a value of 0 .1 184 percent 
reduces the pricing error by about 50 percent. To examine the sensi
tivity of the pricing error to the number of factors, we allow K to vary 
from 1 to 4. The mean pricing error goes down to 0. 1 1 69 percent, 
0 .1 070 percent, and 0.0982 percent in two-, three- and four-factor 
models, respectively. This suggests that there are no substantial re
ductions in the pricing errors when more factors are allowed beyond 
the first one. 

The empirical results are more striking for the decile returns. First, 
there are relatively large variations in the expected returns of the as
sets. When K = 0, the mean pricing error is Q = 0. 3520 percent, about 
46 percent larger than the mean pricing error for the industry returns. 
This large value reflects greater variation in the cross-sectional ex
pected returns. This is perhaps more evident in the summary statistics, 
where the maximum difference of the sample mean returns between 
the decile portfolios is 0.8490 percent, as compared to only 0 .2686 
percent for the industry returns. Second, there is relatively large re
duction in the zero-factor pricing error when at least one factor is 
included. Without factors, the mean pricing error is 0 . 3520 percent, 
but that reduces to 0 . 0845 percent in a one-factor model. This is a far 
greater reduction than that for the industry portfolios. In the case of 
multiple factors, although there are additional reductions in the pric
ing error, the percentage of the reduction is small compared to the 
one-factor case. For example, one additional factor in a three-factor 
model barely reduces the pricing error, but a one-factor model shrinks 
the pricing error of a zero-factor model by 76 percent. 

Consider now the results for the subperiods reported in panels B 
and C of Table 3. The sample size becomes half as large as before. 
As a result, the uncertainty in the estimation goes up. For example, 
in the zero-factor case for the industry returns, the standard error of 
the mean pricing error increases from 0 .0535 to 0.0941 percent in 
panel B and to 0.621 2  percent in panel C. Similar increases also occur 
for the decile returns in the first subperiod. Because of the increased 
uncertainty, the mean pricing errors are less accurately estimated, and 
they are in general larger than before. However, the uncertainty in 
the estimation for the decile returns in the second subperiod is about 
the same as before, which is due to the behavior of the data, as 
seen from the zero-factor model where both the cross-sectional mean 
differences and the standard deviations are almost the same as those 
for the whole sample period. This explains the relatively unchanged 
mean pricing errors in the one- to four-factor models of the decile 
returns in the second subperiod. Overall, in combination with the 
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results of the whole sample period, we still find that there are no 
substantial reductions in the pricing errors when more factors are 
allowed beyond the first one. 

2.3 Risk measures in the APf model 
It is of interest to examine the expected returns, the systematic risks, 
and the unsystematic or idiosyncratic risks in the factor model. The 
results are provided in Table 4. In the Bayesian framework, the point 
estimate of the expected asset returns are the posterior means of the 
alphas. In comparison with the sample means of the asset returns as 
reported in Table 1 ,  there are virtually no differences. So, as far as 
the expected asset returns are concerned, both the classical and the 
Bayesian approaches yield similar results. However, the advantage of 
the Bayesian approach is that it can yield small sample results about 
the idiosyncratic risks and other functions of interest. 

The Bayesian idiosyncratic risks are the posterior means of the sig
mas. In the case of K = 0, the idiosyncratic risks are point estimates of 
the unconditional standard deviations, matching those sampling esti
mates in Table 1 .  In the case of K = 1 ,  the idiosyncratic risks across the 
industry assets are only about half of those in a zero-factor model. The 
reduction for the decile returns is much more substantial. For exam
ple, the idiosyncratic risk of the seventh decile asset it 0 .91 2  percent, 
much smaller than the 7.341 percent level in a zero-factor model. For 
both the industry and decile returns, the idiosyncratic risks generally 
decrease as K varies from 1 to 4. This is expected because some of 
the variations in the returns can be explained by the variations in 
the factors. However, the decrease is much less substantial than from 
a zero-factor model to a one-factor model. When the idiosyncratic 
risks are compared with the pricing errors, it is interesting that the 
Qs are much within the variations of the idiosyncratic risk of each 
asset. 

The systematic risks are not reported. Instead, we report the pro
portions of the idiosyncratic risks to the total risk. The proportions 
measure the importance of the idiosyncratic risks. The higher the pro
portions, the greater the idiosyncratic risks relative to the systematic 
risks. The proportions are computed as the ratios of the diagonal ele
ments of :E to those of ({3' {3 + :E), from which the systematic risks can 
be backed out (as the ratios of the idiosyncratic risks multiplied by 
one minus the proportions, to the proportions). As shown in Table 4, 
the average proportions are below 50 percent in a one-factor model, 
and become smaller as K increases. However, the idiosyncratic risks 
remain a major proportion of the total risk even with up to four fac
tors. Interestingly, the idiosyncratic risks are more disperse for the 
decile returns, and the largest one is found for the first decile (the 
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VI Table 4 :;! "-J 
0\ Expected returns and risks " 

8' 
Industry portfolio returns 

"' "" 1'0 
<Q, � 

Expected returns ;:! ., 
;:! 

0.976 0.886 0.868 0.936 0.968 
" 

K = O  1 .037 1 . 1 19 0 .992 0.939 1 .028 0.847 0.994 !i 
K = 1 1 .037 0.972 1 . 1 14 0.991 0.936 0.888 1 .027 0.863 0.849 0.928 0.965 0.992 � 
K = 2  1 .034 0.966 1 . 103 0.980 0.931 0. 880 1 .017 0.854 0.841 0.921 0.958 0.980 � 
K = 3  1 .038 0.989 1 . 1 36 1 .006 0.951 0.908 1 .045 0.881 0.859 0.947 0.982 1 .009 ::, 

� 
K = 4  1 .048 0.989 1 . 1 36 1 .010 0.949 0.907 1 .048 0.887 0. 859 0.943 0.981 1 .010 -..._ "' 

Idiosyncratic risks 
\o 
;:! 
1\.l 

K = O  6.308 6.804 7.6 1 8  6.437 4 .873 7. 1 27 6.557 7.798 4.84 1  6 . 185 7.453 7.564 .... 
K = 1  3.878 2.055 2 .414  1 .828 1 .976 2.680 1 .936 3.804 2 .582 2 .846 4.750 3 .236 ::5 0\ 
K = 2  3.702 0.676 2 .298 1 .755 1 . 959 2 .656 1 .730 3.804 2 .404 2 .856 4 .762 3.275 
K = 3  5 .802 0.924 2.289 1 .681 1 .730 2 .670 1 .709 3.736 2 .370 1 .749 4.767 3 . 106 
K = 4  3.653 0.917 2 .251  0 . 102 1 .305 2 .665 1 . 870 3.657 2 .362 2 .340 4.697 2 .923 

Proportions of idiosyncratic risks 

K = O  1 .000 1 . 000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 
K = 1 0 .612 0.336 0 .315  0 .282 0.403 0.374 0. 294 0.486 0.531 0.458 0.635 0.426 
K = 2  0.585 0 . 1 1 0  0.300 0.271 0.400 0.371 0.262 0.486 0.494 0.460 0.636 0.431 
K = 3  0.880 0 . 100 0. 199 0. 174 0.240 0.253 0. 173 0.338 0.349 0 . 189 0.477 0 .279 
K = 4  0.550 0. 146 0.280 0.016 0.263 0.368 0. 282 0.460 0.475 0.368 0.612 0.373 



VI 
-..._J 
-..._J 

Table 4 (continued) 

Decile portfolio returns 

Expected returns 

K = O  1.718 1 .481 1 . 284 1 .281 1.202 1 .201 1 . 186 
K = 1  1 .863 1 .623 1 . 4 1 1  1.395 1.317 1 . 305 1 .285 
K = 2  1 .710  1 .473 1.273 1.265 1 . 191  1 . 183 1.168 
K = 3  1 .834 1.582 1 . 365 1 .342 1 . 257 1 . 244 1 .222 
K = 4  1 .646 1 .423 1.229 1 .223 1 . 1 54 1 . 1 49 1 . 137 

Idiosyncratic risks 

K = O  1 1 .451 9.799 8.760 8.080 7.597 7.341 6.987 
K = 1  5.370 3 .213 2 .425 1 .531 l . o66 0 .912 1 . 1 22 
K = 2  3 . 1 73 1 .648 1 .444 1 . 183 1 .072 0.991 0.964 
K = 3  3.760 2.313 1 . 378 1.084 1 .049 0.987 0.895 
k = 4  3.239 0.877 0.714  1 .073 1 .051 0.981 0.934 

Proportions of idiosyncratic risks 

K = O  1 . 000 1 .000 1.000 1 .000 1 . 000 1.000 1.000 
K = 1 0.464 0.324 0.273 0. 187 0. 138 0 . 1 23 0 . 159 
K = 2  0.278 0 . 169 0. 165 0.147 0.142 0. 136 0.139 
K = 3  0 .318 0 .233 0. 156 0. 133 0.137 0.133 0.1 27 
K = 4  0.280 0.087 0.079 0 . 1 3 1  0.137 0. 132 0 . 132 

Let r11 be the return on asset i at time t .  Assume the K-factor model for the returns: 

rtt = a, + {J;1./i1 + · · · + {J;K fK, + <tt, i = 1, . . .  , N, t = 1, . . .  , T, 

1.002 1.046 0.872 
1 . 100 1.132 0.942 
0.991 1 .029 0.856 
1 .034 1.066 0.882 
0.964 1 .005 0.840 

6.522 6.239 5.368 
1 .377 1 .622 2.150 
0.773 0.965 1 .443 
0.803 0 . 178 1 . 408 
0.826 0.665 1 .313  

1 .000 1 .000 1.000 
0.208 0.257 0.396 
0. 1 19 0.155 0.270 
0 . 1 22 0.028 0.258 
0 . 1 24 0. 105 0.239 

where a, = E[r11] is the expected return on asset i, .fiu the k-th pervasive factor at time t, <11 the idiosyncratic factor of asset i at time t, fJ,k the 
beta or factor loading of the k-th factor for asset i. The data are monthly industry and decile returns February 1926 to December 1986 (T = 731 ,  
and N = 1 2  and 10  for the industry and decile returns, respectively). The table provides the posterior means o f  the expected returns, o f  the 
idiosyncratic risks, and of the proportions of the idiosyncratic risks relative to the total risks, respectively. The results are multiplied by 100. 
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smallest capitalization). In contrast, the idiosyncratic risks are fairly 
even across assets for the industry returns. 

2.4 A comparison of the market index with the API' factor 
In applications of the one-factor APT model, the factor is frequently 
prespecified as a market index, say, the CRSP value-weighted index. 
Table 5 provides the results of regressing the industry returns on the 
index and the APT factor, where the APT factor is extracted from 
the one-factor model by using our exact Bayesian procedure (the 
extracted factor is the posterior mean of the factor draws). The index is 
seen to have substantial explanatory power. The adjusted iP is at least 
58. 33 percent and as high as 93.34 percent. But the average (across 
the industry portfolios) is 80. 59 percent. In contrast, the APT factor 
has a minimum R2 of 60. 25 percent, a maximum of 93.31 percent, and 
an average of 81 .28 percent. 

It should be noted that, while there is a time-series R2 gain from 
using the extracted APT factor, this does not mean the factor will nec
essarily yield smaller pricing deviations. Indeed, the regressions are 
only a diagnostic for model fitting, showing only that the extracted fac
tor fits the returns data better than the market index. The reverse side 
is perhaps more interesting. Although the market index is prespecified 
(computed from a simple value-weighting scheme), its performance 
is comparable with the extracted factor which is estimated to best ex
plain the variations across the industry returns, a conclusion similar 
to Brown's (1 989). In addition, as shown in Table 5, it is remarkable 
that there is more than 99 percent correlation between the extracted 
APT factor and the prespecified market index. To further assess the 
performance of the CAPM versus the one-factor APT model, Table 5 
also reports the largest absolute value and the average of the absolute 
values of the regression intercepts. For the APT factor, these values are 
0. 1294 and 0. 0518 percent, respectively. They are smaller than those 
for the index, 0. 1 980 and 0. 0756 percent. Because the intercepts mea
sure pricing deviations of each equation of the model, the additional 
diagnostic confirms the R2 analysis which suggests that the one-factor 
APT model fits the returns better than the single index model. 

Table 6 provides the results of regressing the decile returns on the 
index and on the factor extracted from the decile returns. In the regres
sion on the index, the lowest R2 is 49.31 percent, the maximum 97. 05 
percent, and the average is 85.37 percent. The explanatory power in
creases monotonously as the decile portfolio increases its size. This 
is expected because the index is value weighted, which gives more 
weight to large companies, and hence it fits larger decile portfolios 
better. In contrast, the APT factor explains the decile returns fairly 
evenly well across portfolio size, but explains relatively the worst for 
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Table 5 
Regression of industry returns on the market index and APf factor 

Variable 
Industry 1 

Industry 2 

Industry 3 

Industry 4 

Industry 5 

Industry 6 

Industry 7 

Industry 8 

Industry 9 

Industry 10 

Industry 11 

Industry 12  

t L ia; l 
100 x max Ia ; I  
1 L -z N R,. 

P I 

<X m, 
(% per month) 

0 . 1 506 
(0. 1279) 
0.0303 

(0.0700) 
0.0072 

(0.0898) 
-0.0022 
(0.0618) 
0. 1496 

(0.0755) 
-0.1353 
(0. 1089) 
0.0305 

(0.0728) 
-0. 1980 
(0. 1390) 
0.0852 

(0.0892) 
0.0278 

(0. 1 108) 
0.0345 

(0. 1787) 
-0.0557 
(0. 1301) 

Market index 
0.0756 
0 . 1980 
0.8059 
0.9922 

fJm; R�� <Xj; 
(% per month) 

0.9334 0.7033 0.0966 
(0.0223) (0. 1414) 
1 .0204 0.9043 0.0104 

(0.0122) (0.0713) 
1 . 2750 0.8997 0 . 1080 

(0.0156) (0.0828) 
1 .0976 0.9334 0.0149 

(O.Q108) (0.0615) 
0.7804 0.8261 0.01 18 

(0.0131) (0.0701) 
1 . 1465 0.8313 -0.0993 

(0.0190) (0.0943) 
1 . 1052 0.91 1 1  0.0497 

(0.0127) (0.0656) 
1 . 2059 0.7700 -0. 1294 

(0.0242) (0. 1370) 
0.7405 0.7541 -0.0679 

(0.0155) (0.0934) 
0.9559 0.7681 -0.0269 

(0.0193) (0. 1020) 
1 .0028 0.5833 0.0028 

(0.03 1 1) (0. 1734) 
1 . 1815 0.7857 -0.0040 

(0.0227) (0. 1 1 54) 
APT factor 

0.0518 
0 . 1294 
0.8128 

fJJ; k}; 

0.8468 0.6310 
(0.0239) 
0.9750 0.8992 

(0.0121) 
1 . 2300 0.9132 

(0.0140) 
1 .0505 0.9331 

(0.0104) 
0.7585 0.8481 

(0.01 19) 
1 . 1 238 0.8713 

(0.0160) 
1 .0663 0.9264 

(0.0 1 1 1) 
1 . 1582 0.7733 

(0.0232) 
0.6975 0.7266 

(0.0158) 
0.9349 0.8002 

(0.0173) 
0.9774 0.6025 

(0.0293) 
1 . 1638 0.8291 

(0.0195) 

Let r m be the return on the CRSP value-weighted index in excess of the 1-month Treasury bill rate 
and r; be the excess return on the i-th industry sorted portfolio. In the case of the APT factor, 
r1 is the factor estimates plus the associated risk premium and r; is the return in excess of the 
zero-beta rate. The regression is 

ru = avi + f3m. rv1 + E u ,  t = 1 ,  . . .  , T, i = 1 ,  . .. , N, 

where v = m or f. The data are monthly returns from February 1926 to December 1986 (731 
observations) and there are N = 12 industries. 
1 p is the correlation between r m and r1 , the market index and the APT factor. 

both the smallest and the largest deciles. However, the averaged R2 

is 92.65 percent, much better than the index's performance. Interest
ingly, the correlation between the index and the extracted factor is 
still as high as 95.65 percent. 

2.5 The APT pricing error under informative priors 
The use of the class of informative priors proposed in Section 1 . 4  
requires specifying the constants that determine the prior densities. 
To aid this task, we use the principal factor analysis approach [Seber 
(1 984, pp. 21 9-221 )] to get a rough estimate of the loadings based on 
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Table 6 
Regression of declle returns on the market index and APr factor 

am, f3m t R�� aft f3Jt !?}, 
Variable (o/o per month) (o/o per month) 
Decile 1 0.5577 1 .2863 0.4931 0.0568 1 .6122 0.7412 

(0.2303) (0.0552) (0. 1671) (0.0395) 
Decile 2 0.3722 1 .2299 0.6669 -0.0089 1 .4639 0.9041 

(0. 1536) (0.0368) (0.0837) (0.0198) 
Decile 3 0.3074 1 . 2014 0.7265 -0.0249 1 .3999 0.9446 

(0. 1303) (0.0312) (0.0595) (0.0141) 
Decile 4 0.2628 1 . 1630 0.7884 -0.0080 1 .3176 0.9693 

(0. 1o65) (0.0255) (0.041 1) (0.0097) 
Decile 5 0. 1733 1 . 1359 0.8242 -0.0593 1 .2643 0.9790 

(0.0928) (0.0222) (0.0325) (0.0077) 
Decile 6 0 . 1738 1 . 1269 0.8542 -0.0347 1 . 2359 0.9852 

(0.0823) (0 .0197) (0.0266) (0.0063) 
Decile 7 0. 1392 1 . 1 1 51 0.8994 -0.0203 1 . 1828 0.9719 

(0.0659) (0.0158) (0.0353) (0.0083) 
Decile 8 0.0634 1 .0836 0.9239 -0.0542 1 . 1 231  0.9520 

(0.0550) (0.0132) (0.0443) (0.0105) 
Decile 9 0.0813 1 .0470 0.9458 0.0217 1 .0452 0.9071 

(0.0443) (0.0106) (0.0587) (0.0139) 
Decile 10 -0.0466 0.9470 0.9705 0.0432 0.8407 0.7384 

(0.0292) (0.0070) (0.0878) (0.0207) 
Market index APT factor 

� L iad 0. 1402 0.0410 
100 x max lad 0.5577 0.0593 
I L -2 0.8537 0.9265 "ii R, 

P I 0.9565 

Let r m be the return on the CRSP value-weighted index in excess of the 1-month Treasury bill rate 
and r, be the excess return on the i-th industry sorted portfolio. In the case of the APT factor, 
r1 is the factor estimates plus the associated risk premium and r1 is the return in excess of the 
zero-beta rate. The regression is 

rlt = a vi + f3v, rvt + Ett , t = 1 ,  . . .  ' T, i = 1 ,  . . .  ' N, 

where v = m or f. The data are monthly returns from February 1926 to December 1986 (731 
observations) and there are N = 10 decile returns. 

1 p is the correlation between r m and r1 , the market index and the APT factor. 

the first 1 0  years of data and use the estimates as the prior means for 
the entire sample. In addition, we use the associated standard errors as 
a benchmark for the standard errors of the prior densities. To reflect 
various degrees of belief about Q, we provide two specifications, 
priors A and B, for the prior standard errors. Prior A is " large" in 
which the prior standard errors are five times the benchmark, and 
prior B is "small" in which the prior standard errors are one-fifth 
of the benchmark. Given either prior A or B, the prior density of 
the pricing error Q is straightforward to compute. Table 7 reports 
the prior means, standard deviations, and the 90 percent Bayesian 
confidence intervals for Q. Panels A and B are obtained by using 
priors A and B, respectively. Under prior A, Q has a prior mean of 
1 .  7340 percent, and its 90 percent Bayesian confidence interval is 
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Table 7 
Average pricing errors under informative priors 

Industry returns Decile returns 

K Q Std. error 90% inteJVal Q Std. error 90% inteiVal 

Panel A: A large prior error 

1 .7340 0.3919 [1 . 1 1 27, 2 .40 1 2] 0 .3129 0.0791 [0 . 1879, 0.4469] 
0 . 1 2 1 4  0 .0282 [0 0777, 0 . 1694] 0 .0983 0.0343 [0 .0534, 0 . 1633] 

2 1 .6231 0 .3877 [1 .01 13,  2.2866] 0 . 1463 0.0397 [0.0849, 0 .2151 ]  
0. 1 169 0 .0277 [0.0734, 0 . 1642] 0.0596 0.0204 [0 .0327, 0.0979] 

3 2 . 1 268 0 .5373 [12856, 3 .0608] 0. 1492 0.0442 [0 .0805, 0.2253] 
0 . 1079 0 .0298 [0.0260. 0.0673] 0.0456 0.0125 [0 .0260, 0.0673] 

4 2 . 1 276 0.5852 [ 1 21 22, 3 . 1 403] 0 . 1468 0.0477 [0 .0734, 0.2292] 
0 .0913 0 .0262 [0.0521 '  0 1376] 0.0394 0.01 13 [0 .0214.  0 .0586] 

Panel B:  A small prior error 

0.0693 0.0156 [0.0564, 0 . 1342] 0.0313 0.0079 [0 .0188, 0.0447] 
0.0357 0 .0060 [0.0258, 0.0458] 0.0295 0.0075 [0 .0177, 0 .0424] 

2 0.0649 0.0155 [0.0405, 0.02 1 5] 0 .0146 0.0040 [0.0085, 0 .02 1 5] 
0 .0591 0.0136 [0.0377, 0.0822] 0.0145 0.0039 [0 .0084, 0.02 14] 

3 0 .0854 0.02 1 5  [0.0520, 0. 1 224] 0.0149 0.0044 [0 .0080, 0.0225] 
0.0692 0.0168 [0.0428, 0 .0981] 0.0146 0.0043 [0 .0079, 0.0220] 

4 0.0846 0.0232 [0.0488, 0 . 1 247] 0.0146 0.0048 [0 .0073, 0 .0230] 
0.0675 0.0175 [0.0398, 0 0976] 0.0145 0.0046 [0.0074, 0.0227] 

Let ru be the return on asset i at time t .  Assume the K-factor model for the returns: 

ru = 01; + f3il.ht + · · · + f3tK/Kt + E u ,  i = 1, . . .  , N, t = 1, . . .  , T, 

where 011 = E[rul is the expected return on asset i, j,, the k-th peiVasive factor at time t, E u  the 
idiosyncratic factor of asset i at time t, f31k the beta or factor loading of the k-th factor for asset i. The 
pricing error from the APT is measured by Q ::-: 0, where Q2 = a' [IN - {3' ((3'' {3')- 1  {3"la/ N, {3' = 
(lN, {3) ,  {3 is an N x K matrix of the factor loadings, and lN is an N x 1 vector of ones. The 
data are monthly industry and decile returns from February 1926 to December 1986 (T = 731).  
The priors in panel A have larger pricing errors than those in panel B.  In the table, the first row 
next to a given number of K summarizes the prior distribution of Q, and the second reports 
the posterior means, standard deviations, and the 90 percent Bayesian confidence intervals (the 
results are multiplied by 100). 

[1 . 1 1 27 percent, 2 .401 2 percent] in the K = 1 case. This prior is rather 
large relative to the cross-sectional difference between the expected 
returns of the industries. In contrast, the prior mean under prior B 
is only 0. 0693 percent, relatively small as compared with the cross
sectional difference. 

Table 7 also reports for Q the posterior means, standard deviations, 
and the 90 percent Bayesian confidence intervals. The results are in 
the second row next to a given number of K. Under prior A and 
K = 1 ,  the posterior mean for the industries is 0. 1213  percent, a sharp 
reduction from the prior mean level of 1 .7340 percent. Interestingly, 
this posterior mean is also very close to 0. 1 1 84 percent, the posterior 
mean under the diffuse prior. However, the posterior mean under 
prior B is in general smaller than those obtained under the diffuse 
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prior. For example, the posterior mean for the industries in the K = 1 
case is 0. 0357 percent, smaller than 0. 1 184 percent. Overall, under any 
of the informative or diffuse priors, there is little progress in reducing 
the pricing error by including more factors beyond the first one. 

3. Conclusions 
In this article we propose an exact Bayesian framework for exam
ining the APT pricing restrictions. First, our approach is a one-step 
approach. In contrast to existing studies, no preestimates of either 
the factors or the factor loadings are required. Second, we propose 
a simple measure of pricing errors and obtain its exact posterior dis
tribution. Unlike the likelihood ratio test in the classical framework, 
our measure indicates the extent to which the APT restrictions devi
ate from the data. As an application of our approach, we study the 
APT pricing restrictions by using monthly portfolio returns grouped by 
industry and market capitalization. We find that there is little improve
ment in reducing the pricing errors by including more factors beyond 
the first one. Furthermore, our approach can also be applied to study 
a variety of other asset pricing models, and similar measures of pricing 
errors can be proposed. Although it is difficult to obtain the exact sam
pling distributions of these measures in many applications, it is easy to 
evaluate the exact posterior distributions in the Bayesian framework. 

Appendix A 

An introduction to the Gibbs sampler 
The Gibbs sampler is a path-breaking technique for generating ran
dom samples from a multivariate distribution by using its conditional 
distributions without having to compute the full joint density. In many 
problems, such as the ARCH, GARCH, regime-switching, and latent 
variables models, the full joint density is extremely difficult to cal
culate, but the conditional distributions are easy to evaluate. Hence, 
the Gibbs sampler can be used to make difficult Bayesian analysis 
tractable. In addition, it is also useful in classical statistics such as in 
the evaluation of likelihood functions [see Casella and George 0 992) 
and references therein] . 

The idea of the Gibbs sampling technique is simple. To get a sample 
from a complex density function j(e1 , e2 ) ,  it starts from an arbitrary 
initial value (e1 , e2) = (ef , ef) in the support of j(e1 , e2 ) and obtains a 
new value ce{ , ei ) with e{ drawn from j(el l ef) and ei from j(ez l e{ ) .  
Iterating this process gives rise to a sequence { ( er , er) } .  Under fairly 
general conditions, (eln ,  er) approximates well a random sample from 
the joint density j(el , ez) .  
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To illustrate an application of the Gibbs sampler, consider an AR(l ) 
model: 

Xt = PXt-1 + E t , t = 1 ,  2 ,  . . .  , T, (A. 1 ) 

where I P I  < 1 ,  and E 1  is i.d.d. and normally distributed with E(E1) = 0 
and Var( E 1) = a 2 . Let Ip be an indicator function, Ip = 1 if I p I < 1 and 
0 otherwise. Then fJo(p, a2) ex �Ip is a diffuse prior imposing only 
the stationarity condition. The posterior density is 

(A.2) 

where L(p, a2) is the (exact) likelihood function, which is very com
plex [Amemiya (1 985, p. 1 62)] , and hence it is difficult to draw samples 
from it. Treating .xo as a parameter, the joint posterior density of p, a 2, 
and .xo is 

(A.3) 

where L(p, a2, .xo) is the likelihood function conditional on .xo and is 
trivially obtained as 

L(p, a2, "b) � (2n ) -T/Za -T exp [- t (x, - px,_, )2 /2a2] • (A.4) 

Clearly, the density p(p, a2) in Equation (A.2) is given by p(p, a2, .xo) 
after integrating .xo out, implying that p(p, a2, .xo) should provide all 
information about p(p, a2) .  For example, the posterior mean of p will 
be given by J J J pp(p, a2, .xo) da2d.xodp .  Hence, we need only be 
concerned about drawing samples from p(p, a2, .xo) . 

By the Gibbs sampler, the samples are obtained from the condi
tional distributions: p and a2 are drawn from a normal (truncated at 
I P I < 1 )  and a x 2-distribution conditional on .XQ ,  and .xo is drawn, 
conditional on p and a , from a normal distribution, .xo ,....., N(px1, a2) .  
This procedure generates a sequence of ( p  n, a n, xf)) which can then 
be used to approximate the expected value of a function of interest, 
E[g(p, a) ] ,  by Monte Carlo integration: 

(A. 5) 

For example, if g(p, a)  = p ,  Equation (A.5) delivers a numerical ap
proximation to the posterior mean of p .  The accuracy increases as N 
goes up. 

Based on the draws (p n, a n, xf)) ,  the Gibbs approximation to the 
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likelihood function L(p, a2) is 

N 
- 2 1 '"' 2 n L(p, a ) = 

N � L(p, a , x0 ) • 

n=1 
(A.6) 

This is useful in applications where the exact likelihood function is 
difficult to compute, whereas the conditional likelihood function is 
easy to obtain. 

Appendix B 

An alternative Gibbs sampling method for B 
The key for drawing B lies in drawing its first K rows with positive 
f3ii ( i  = 1 ,  . . . , K) . Let bt = a1 and b� = ( a i, f3il , . . .  , /3i( i- l) ) '  for i = 

2, . . .  , K. Then, bt , . . .  , b� are mutually independent and multivariate 
normally distributed: 

j(b� lf, ai , f3ii) ex exp (-� (b: - b:) 'F7'F: (b: - h7)) , i :::: K, 2ai 
(B . 1 ) 

where F� is a T x i matrix consisting of the first i columns of F and b: 
is the OLS estimator of the regression of ( ri - f3iifi) on (1 , fi, . . .  , fi-d ·  
The conditional distributions of {31 1 , . . .  , f3KK are also mutually inde
pendent, and each is truncated normal: 

� 

2 where f3ii = L:Crit - ai - f3ilfit - · · · - /3i( i- 1Jfu-1J t)fitf L fit and 
K i = a l / L h7 . There is also an efficient method for implementing 
Equation (B.2). To draw X > c from X rv N(a , b) , a normal random 
variate truncated above c, let x = a + �y; then y "' N(O, 1 )  and 
y > d = (c-a)/�. Following Geweke Cl 991 a), y is drawn efficiently 
by using (i) a simple normal rejection method if a ::=: 0 .5; and (ii) an 
exponential rejection method if a > 0 .5 (the exponential rejection 
works in two steps: draw z and u independently from the uniform 
distribution on [0, 1] and compute both y = a - 2 log z and h = 

e-V-y-a'+a) ; if h < u, reject and redo; otherwise, accept y as the 
sample). 
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