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The problem of maximizing the expected utility from terminal wealth in the
presence of a stochastic endowment and constraints on the portfolio choices is
examined. We model short-sale and borrowing constraints, as well as incom-
plete markets, as special cases of constraints. The existence of optimal policies
is established under fairly general assumptions on the security price coefficients
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1. INTRODUCTION

This paper examines the problem of maximizing the expected utility
from terminal wealth in a continuous-time, finite-horizon economy when
labor income follows an arbitrary bounded stochastic process and the dollar
amounts invested in the traded assets are constrained to take values in a
given closed, convex set. Short-sale and borrowing constraints, as well as
incomplete markets, can be modeled as special cases of this setting.

The problem of maximizing the expected utility from terminal wealth
is well solved in the context of a complete financial market in three steps.
First, on the underlying probability space we determine a new measure
that discounts the growth inherent in the market; under this measure, the
expected value of the final wealth attained by any reasonable portfolio is
equal to the initial endowment. Second, among all random variables whose
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expectation under the new measure is equal to the initial endowment, we
determine the most desirable one. Third, it is shown that an optimal
portfolio can be constructed, which attains this most desirable random
variable as its terminal wealth.

Results on the characterization and existence of optimal consumption
and investment policies with a finite horizon and with security prices fol-
lowing general Itô processes have been obtained using martingale and du-
ality techniques by He and Pearson (1991), Karatzas, Lehoczky, and Xu
(1991), and Xu and Shreve (1992). They have examined the optimal con-
sumption/investment problem with incomplete markets and/or short-sale
constraints. Cvitanic and Karatzas (1992) have considered the more gen-
eral case in which the portfolio weights are constrained to take values in a
closed convex subset. All of these papers assume, however, that the agent
is only endowed with some nonnegative amount of wealth at the initial
date and there is no labor income. Hence, they do not address the prob-
lem of a nontraded endowment. Their approaches transform the primal
constrained-maximization problem into a dual unconstrained-minimization
problem that solves for the individual shadow state prices (intertemporal
marginal rates of substitution). Because this dual problem is, in general,
not convex in the preference of a nontraded endowment process, the possi-
bility of directly extending their results to models with stochastic income
is precluded.

A recent paper by Cuoco (1997) is the only successful application of mar-
tingale technique in a continuous-time setting to establish the existence of
optimal policies in the presence of stochastic income and constraints on
investment policies. Cuoco considers the intertemporal optimal consump-
tion and investment problem in the presence of a stochastic endowment
and constraints on the portfolio choices.

In contrast this paper allows for the presence of nontraded stochastic
income and portfolio constraints to obtain optimal investment and portfolio
rules about the preference from terminal wealth in a very general setting.
We emphasize that we focus on the case of constraints on the dollar amounts
invested in risky assets, rather than on the portfolio weights: this different
formulation is required by the fact that with a nontrival income process,
and hence possibly negative wealth, portfolio weights are not defined. It
should, however, be easy to see that, with a nonnegative wealth process,
our setting includes the case of constraints on the portfolio weights as a
special case.

The rest of this paper is organized as follows. In sections 2, 3, and 4,
we describe the model with the corresponding notations and definitions.
Section 5 obtains a static characterization of the feasible terminal wealth
policies as those satisfying a budget constraint with respect to all of the
state-price densities consistent with the absence of arbitrage opportuni-
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ties. Section 6 shows that the primal problem of maximizing the expected
utility on the set of feasible terminal wealth policies admits a solution.
Section 7 characterizes optimal policies. Section 8 makes some concluding
remarks. Proofs of theorems are included in the appendix. Our proof of
existence in the primal problem uses the relaxation-projection technique for
optimization without compactness introduced by Levin (1976), and further
developed by Fougeres (1979).

2. THE ECONOMIC SETTING

We consider a continuous-time economy on the finite time span [0, T ],
in which an individual endowed with some initial wealth and a stochas-
tic income flow chooses an optimal investment policy. Let λ denote the
Lebesgue measure on [0, T ].

Information structure. The uncertainty is represented by a filtered
probability space (Ω,F,F, P )on which is defined an n-dimensional Brown-
ian motion

w = {(w1(t), · · · , wn(t))T : t ∈ [0, T ]}.

The filtration F = {Ft} is the augmentation under P of the filtration

generated by w. We assume that F = σ

 ⋃
0≤t≤T

Ft

 , or that the true state

of nature is completely determined by the sample paths of w on [0, T ]. We
interpret the sigma-field Ft as representing the information of the individual
at time t and the probability measure P as representing his beliefs. All the
stochastic processes in the sequel are progressively measurable with respect
to F and all the equalities involving random variables are understood to
hold P -a.s..

Securities market. The investment opportunities are represented by
(n+ 1) long-lived securities. The first security, which we term the “bond”,
is locally riskless and pays no dividends. Its price process, denoted by B,
is given by

B(t, ω) = exp
(∫ t

0

r(τ, ω)dτ
)

(1)

for some interest rate process r.
Assumption 1. The interest rate process r is bounded uniformly in

(t, ω) ∈ [0, T ]× Ω : r ≤ rB for some rB > 0.
The remaining n assets are risky. Letting S = (S1, · · · , Sn) denote their

price process and D = (D1, D2, · · · , Dn) their cumulative dividend process,
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we assume that S +D is an Itô process,

S(t, ω) +D(t, ω)

= S(0) +
∫ t

0

IS(τ, ω)µ(τ, ω)dτ +
∫ t

0

IS(τ, ω)σ(τ, ω)dw(τ, ω), (2)

where IS(t) denotes the n× n diagonal matrix with elements S(t) and∫ T

0

|IS(t)µ(t)|dt+
∫ T

0

|IS(t)σ(t)|2dt <∞.

Assumption 2. The diffusion matrix σ satisfies the nondegeneracy
condition

xTσ(t)σ(t)Tx ≥ ε|x|2 (3)

almost surely for all (x, t) ∈ Rn × [0, T ] and for some ε > 0. Moreover,
letting

k0 = −σ−1(µ− r1), (4)

where 1 = (1, · · · , 1)T ∈ Rn, we have

E

[
exp

(
1
2

∫ T

0

|k0 (t)|2 dt

)]
<∞. (5)

Condition (3) implies in particular that σ(t) has full rank a.s. for all
t ∈ [0, T ], so that in the absence of portfolio constraints markets are dy-
namically complete, and that σ(t, ω)−1 has an essentially bounded matrix
norm, uniformly in (t, ω) ∈ [0, T ]×Ω (Karatzas and Shreve, 1988, Problem
5.8.1). Condition (5) is a “Novikov condition” (Karatzas and Shreve, 1988,
Corollary 3.5.13) and is used to guarantee the existence of an equivalent
martingale measure.

Trading strategies. Trading takes place continuously and there are no
market frictions. An admissible trading strategy is an (n+ 1)-dimensional
vector process (α, θ)-where α(t) and θk(t) denote, respectively, the dollar
amount invested at time t in the bond and the kth risky asset-satisfying∫ T

0

|α (t) r (t)| dt+
∫ T

0

∣∣∣θ (t)T µ (t)
∣∣∣ dt+

∫ T

0

∣∣∣θ (t)T σ (t)
∣∣∣2 dt <∞. (6)

The set of admissible trading strategies is denoted by Θ.
Preferences and endowments. The agent in our model has a utility

function U : (0,∞) → R for wealth. U is strictly increasing, strictly
concave, continuous and continuously differentiable, and satisfies

U ′(0) , lim
x→0

U ′(x) = ∞, U ′(∞) , lim
x→∞

U ′(x) = 0. (7)
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The (continuous, strictly decreasing) inverse of the function U ′ will be
denoted by f : (0,∞) → (0,∞); by analogy with (7), it satisfies

f(0) , lim
y→0

f(y) = ∞, f(∞) , lim
y→∞

f(y) = 0. (8)

We introduce also the function

U(y) , max
x>0

[U(x)− xy] = U(f(y))− yf(y), 0 < y <∞, (9)

which is the convex conjugate of −U(x), with U extended to be −∞ on the
negative real axis. The function U is strictly decreasing, strictly convex,
and satisfies

U
′
(y) = −f(y), 0 < y <∞, (10)

U(x) = min
y>0

[U(y) + xy] = U(U ′(x)) + xU ′(x), 0 < x <∞. (11)

The useful inequalities

U(f(y)) ≥ U(x) + y[f(y)− x], ∀x > 0, y > 0, (12)

U(U ′(x)) ≤ U(y)− x[U ′(x)− y], ∀x > 0, y > 0, (13)

then follow directly from (9) and (11).
The monotonicity of U and U guarantees that the limits

U(0) , lim
x→0

U(x), U(∞) , lim
x→∞

U(x),

U(0) , lim
y→0

U(y), U(∞) , lim
y→∞

U(y),

exist in the extended real-number system. Furthermore,

U(0) = U(∞), U(0) = U(∞)

(The proof of the above equalities is in Karatzas, Shreve, and Xu (1991)).
The agent is endowed with some initial wealth d0 ≥ 0 and a nonnegative

stochastic income process d with∫ T

0

B(t)−1d(t)dt ≤ Kd (14)

for some Kd > 0.
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3. PORTFOLIO CONSTRAINT SETS

We fix from now on a nonempty, closed, and convex set A ⊆ Rn+1 and
assume that the agent’s portfolio (α, θ) is constrained to take values in A.
As we will see shortly, several constraints of practical interest such as short-
sale prohibitions, nontradeable assets, or minimum capital requirements,
can be modeled as special cases of this class of constraints.

For v = (v0, v−) ∈ R×Rn, let

δ(v) = sup
(α,θ)∈A

−(αv0 + θT v−)

denote the support function of −A and let

A =
{
v ∈ Rn+1 : δ(v) <∞

}
denote its effective domain. We note that δ is a positively homogeneous,
lower semicontinuous, and proper convex function on Rn+1 and that A is
a closed convex cone (the barrier cone of −A). We will assume that the
constraint set A is such that the following condition is satisfied.

Assumption 3. The function δ is upper semicontinuous and bounded
above on A . Moreover, v0 ≥ 0 for all v ∈ A.

Remark 3.1. It is easily verified that the set
{
v0 : v ∈ A

}
must be

bounded below by 0 as long as lending and investing nothing in the risky
assets is admissible (i.e., as long as (α, θ) ∈ A for all α large enough). Also,
since δ is positively homogeneous and A is a cone, the condition that δ be
bounded abov on A is equivalent to δ being nonpositive on A. In particular,
this condition is satisfied if A is a cone, in which case δ ≡ 0 on A.

We now provide some examples of constraint sets A satisfying Assump-
tion 3, together with the associated support functions and dual sets.

(a) No constraints:

A = Rn+1,
A = {0} ,
δ (v) = 0 for v ∈ A.

This is the problem studied by Cox and Huang (1989, 1991).
(b) Nontradeable assets (incomplete markets):

A =
{
(α, θ) ∈ Rn+1 : θk = 0, k = m+ 1, · · · , n

}
,

A =
{
v ∈ Rn+1 : vk = 0, k = 0, · · · ,m

}
,

δ (v) = 0 for v ∈ A.
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For the case of no stochastic income (y ≡ 0), this problem was originally
approached using martingale techniques by He and Pearson (1991), and
Karatzas, Shreve, and Xu (1991).

(c) Short-sale constraints:

A =
{
(α, θ) ∈ Rn+1 : θk ≥ 0, k = m+ 1, · · · , n

}
,

A =
{
v ∈ Rn+1 : vk = 0, k = 1, · · · ,m; vk ≥ 0, k = m+ 1, · · · , n

}
,

δ (v) = 0 for v ∈ A.

Again assuming no income stream, this problem was examined by Xu and
Shreve (1992).

(d) Buying constraints:

A =
{
(α, θ) ∈ Rn+1 : θk ≤ 0, k = m+ 1, · · · , n

}
,

A =
{
v ∈ Rn+1 : vk = 0, k = 1, · · · ,m; vk ≤ 0, k = m+ 1, · · · , n

}
,

δ (v) = 0 for v ∈ A.

(e) Portfolio-mix constraints:

A =

{
(α, θ) ∈ Rn+1 : α+

n∑
k=1

θk ≥ 0, θ ∈M

(
α+

n∑
k=1

θk

)}
,

where M is any nonempty, closed, and convex subset that contains the
origin,

A =
{
v ∈ Rn+1 : vT (α, θ) ≥ 0,∀ (α, θ) ∈ A

}
,

δ (v) = 0 for v ∈ A.
For the case of no income stream, and hence a nonbinding nonnegativity
constraint on wealth, this problem was examined by Cvitanic and Karatzas
(1992).

(f) Minimum capital requirements:

A =

{
(α, θ) ∈ Rn+1 : α+

n∑
k=1

θk ≥ K

}
,

where K ≥ 0,

A =
{
k1 : k ≥ 0

}
,

δ (v) = −Kv0 for v ∈ A.
Special cases of minimum-capital requirements are the borrowing con-
straints studied by He and Pages (1993) (where K = 0 ) and the portfolio-
insurance constraint studied by Bardhan (1994) and Basak (1995) (where
K > 0 ).
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4. THE INDIVIDUAL INVESTMENT PROBLEM

Given the price coefficients P = (r, µ, σ), a random variable B is said to
be feasible terminal wealth if there exists an admissible trading strategy
(α, θ) ∈ Θ and a nonnegative, increasing process C such that, letting

W (t) = α (t) +
n∑
k=1

θk (t)

denote the value of the agent’s portfolio at time t, we have

W (t) = d0 +
∫ t

0

(
α (τ) r (τ) + θ (τ)T µ (τ)

)
dτ

+
∫ t

0

θ (τ)T σ (τ) dw (τ) +
∫ t

0

(d (τ)) dτ − C (t) , (15)

W (t) ≥ −K, (16)

B = W (T ) ≥ 0, (17)

min
(
E (U (W (T )))+ , E (U (W (T )))−

)
<∞ (18)

for all t ∈ [0, T ] and some K ∈ R, where x+ and x− denote, respectively,
the positive and the negative part of the real number x. The terminal
wealth B is said to be A-feasible if the above conditions are satisfied and
(α (t) , θ (t)) ∈ A for all t ∈ [0, T ]. We will let B(P, A) denote the set of
A-feasible terminal wealth given the price system P.

The process C in (15) captures the possibility of free disposal of wealth:
in other words, the agent is allowed not to reinvest some of his wealth if
he chooses to do so. The total amount of wealth “wasted” up to time t
is given by C(t). Equation (14) is then the usual dynamic budget con-
straint: it states that the wealth at any time t equals the initial wealth,
plus the trading gains, minus the cumulative net withdrawals. Equations
(16) and (17) state that, while the investor is allowed to borrow against
future income and thus to have short-term deficits, the final wealth must
be sufficient to cover any amount borrowed. Moreover, the wealth process
must admit a uniform lower bound: this is sufficient to rule out arbitrage
opportunities, such as the doubling strategies discussed by Harrison and
Kreps (1979).

The individual investment problem can now be formally stated as that
of maximizing the expected utility functional E(U) over the set {B : B ∈
B(P, A)}.
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5. STATE PRICES AND FEASIBLE WEALTH PROCESSES

Since security prices and the income stream in this model allow possibly
non-Markovian processes, stochastic dynamic programming cannot be ap-
plied to analyze the agent’s consumption problem. Therefore we will use
martingale techniques to transform the dynamic budget constraint in (15)
into a set of equivalent static constraints.

In order to motivate the static characterization of feasible consumption
plans, consider first the unconstrained case (A = Rn+1). Define the dis-
count process

β0 (t) = B (t)−1 = exp
(
−
∫ t

0

r (τ) dτ
)

and the exponential local martingale

ξ0 (t) = exp
(∫ t

0

k0 (τ)T dw(τ)− 1
2

∫ t

0

|k0 (τ)|2 dτ
)
, (19)

where k0 is the process of (4). By (5), ξ0 is in fact a strictly positive martin-
gale, so that it is possible to define a probability measure Q0 equivalent to
P by dQ0

dP = ξ0 (T ). Also, it is well-known (and easily verified by Girsanov’s
theorem) that Q0 has the property that the discounted gain process

G0 (t) = β0 (t)S (t) +
∫ t

0

β0 (s) dD(s)

becomes a local martingale under it, andQ0 is in fact the unique probability
measure equivalent to P with this property: it is alternatively known in the
finance literature as the risk-neutral probability or the equivalent martingale
measure. The process π0 = β0ξ0 then identifies the unique state-price
density for the economy, in the sense that the value at time 0 of any wealth
process W satisfying an integrability condition is given by

E [π0 (T )W (T )] = EQ0 [β0 (T )W (T )] ,

where EQ0 denotes the expectation operator under Q0. Without con-
straints on the set of admissible portfolio policies, it follows that a terminal
wealth is feasible if and only if its value does not exceed the value of the
individual’s endowment, i.e., if only if

EQ0

[
β0 (T )W (T )−

∫ T

0

β0 (t) d (t) dt

]
≤ d0. (20)
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We will refer to (20) as a static budget constraint. The dynamic problem
of maximizing the expected utility over the terminal wealth W (T ) satisfy-
ing (15)-(17) can then be restated as the equivalent problem of maximizing
the expected utility subject to the single budget constraint in (20).

We will now show that a similar transformation of the optimal invest-
ment problem into an equivalent static one is possible in the presence of
constraints and that conditions similar to those in Cox and Huang (1991)
are sufficient to guarantee the existence of an optimal investment plan. The
main differences are that, with unconstrained portfolio policies (A = Rn+1)
π0 is the unique state-price density consistent with the absence of arbitrage
opportunities; but with constrained portfolios (A ⊂ Rn+1) there exist in-
finitely many state-price densities that are consistent with no arbitrage,
and a family of static budget constraints needs to be considered in order
to ensure feasibility.

Following the lead of Cvitanic and Karatzas (1992, 1993), let N denote
the set of A-valued processes v satisfying

E

[∫ T

0

|v (t)|2 dt

]
<∞. (21)

For each v ∈ N, the processes

βv (t) = exp
(
−
∫ t
0

(r (τ) + v0 (τ)) dτ
)
,

kv (t) = −σ (t)−1 (
µ (t) + v− (t)− (r (t) + v0 (t)) 1

)
,

ξv (t) = exp
(∫ t

0
kv (τ)T dw(τ)− 1

2

∫ t
0
|kv (τ)|2 dτ

)
,

πv (t) = βv (t) ξv (t) ,

are well-defined, and ξv is a strictly positive local martingale. Let N∗

denote the subset of elements v ∈ N for which ξv is in fact a martingale.
Note that N∗ is nonempty, since (5) and the fact that A is a cone ensure
that we always have 0 ∈ N∗.

Each ξv with v ∈ N∗ can be interpreted as the density process cor-
responding to some probability measure Qv equivalent to P . Also, it is
clear that each πv with v ∈ N∗ can be interpreted as the unique state-
price density in a fictitious unconstrained economy with price coefficients
P=(r + v0, µ+ v−, σ). More generally, the following result shows that each
πv with v ∈ N∗ constitutes an arbitrage-free state-price density in the orig-
inal economy when the portfolio policies are constrained to be in A, and
that the satisfaction of a budget constraint with respect to all of these
state-price densities is also sufficient to guarantee the A-feasibility.
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Theorem 5.1. A random variable B is A-feasible if and only if

EQv [βv (T )B] ≤ d0 + EQv

[∫ T

0

βv (t) (δ (v (t)) + d (t)) dt

]
, ∀v ∈ N∗.

(22)

Proof. Suppose first that B is A-feasible, i.e., that (15)-(18) are satisfied
for some investment strategy (α, θ) with (α (t) , θ (t)) ∈ A for all t ∈ [0, T ].
Using Itô’s lemma, it is easy to show that (15) implies

βv (t)W (t)−
∫ t

0

βv (τ) d (τ) dτ

≤ βv (t)W (t)−
∫ t

0

βv (τ) d (τ) dτ +
∫ t

0

βv (τ) dC (τ)

= d0 −
∫ t

0

βv (τ)
(
α (τ) v0 (τ) + θ (τ)T v− (τ)

)
dτ

+
∫ t

0

βv (τ) θ (τ)T σ (τ) dwv (τ)

≤ d0 +
∫ t

0

βv (τ) δ (ν(τ)) dτ +
∫ t

0

βv (τ) θ (τ)T σ (τ) dwv (τ) , (23)

for all v ∈ N∗ , where

wv (t) = w (t)−
∫ t

0

kv (τ) dτ,

is a Brownian motion under Qv. For each positive integer n, letting

τn = T ∧ inf
{
t ∈ [0, T ] :

∫ t

0

∣∣∣θ (τ)T σ (τ)
∣∣∣2 dτ ≥ n

}
,

with the usual convention maintained for the remainder of the paper, i.e.,
inf (∅) = ∞. Since the stochastic integral on the right-hand side of (23) is
a Qv-martingale on [0, τn], taking expectations gives

EQv [βv (τn)W (τn)]− EQv

[∫ τn

0

βv (t) d (t) dt
]

≤ d0 + EQv

[∫ τn

0

βv (t) δ (v (t)) dt
]
. (24)
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Letting n ↑ ∞, we have τn ↑ T (because of (6)). Applying the monotone
convergence theorem twice and using the fact that

EQv

[∫ T

0

βv (t) d (t) dt

]
≤ EQv

[∫ T

0

β0 (t) d (t) dt

]
≤ Ky

because of (14) and Assumption 3, shows that

lim
n→∞

EQv

[∫ τn

0

βv (t) d (t) dt
]

= EQv

[∫ T

0

βv (t) d (t) dt

]
.

Applying the dominated convergence theorem and Assumption 3, shows
that

lim
n→∞

EQv

[∫ τn

0

βv (t) δ (v (t)) dt
]

= EQv

[∫ T

0

βv (t) δ (v (t)) dt

]
.

As for the first term in (24), we have from (16) and Assumption 3

(βv (τn)W (τn))
− ≤ (β0 (τn)W (τn))

− ≤ Kexp

(∫ T

0

|r (t)| dt

)
<∞,

for all n. Fatou’s lemma then gives

lim inf
n→∞

EQv [βv (τn)W (τn)] ≥ EQv [βv (T )W (T )] ≥ 0,

where the last inequality follows from (17). Therefore, we have

EQv [βv (T )W (T )] ≤ lim inf
n→∞

EQv [βv (τn)W (τn)]

≤ lim inf
n→∞

EQv

[∫ τn

0

βv (t) d (t) dt
]

+ d0

+ lim inf
n→∞

EQv

[∫ τn

0

βv (t) δ (v (t)) dt
]

= EQv

[∫ T

0

βv (t) (d(t) + δ (v (t)))dt

]
+ d0.

This establishes (22).
To show the converse, let T denote the set of stopping time τ with τ ≤ T ,

and for any τ ∈ T let

W (τ) = sup
v∈N∗

βv (τ)−1
EQv

[
βv (T )W (T )−

∫ T

τ

βv (t) (d(t) + δ (v (t)))dt | Fτ

]
.
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Since W (0) ≤ d0 and the family of random variables

Xv (τ) =
∫ T

τ

exp
(
−
∫ t

τ

(r (s) + v0 (s)) ds
)

(y(t) + δ (v (t)))dt,

is uniformly bounded above (because of (14) and Assumption 3), it follows
from the argument used in the proof of Propositions 6.2 and 6.3 in Cvitanic
and Karatzas (1993) thatW satisfies the equation of dynamic programming

W (τ1) = sup
v∈N∗

[EQv

∫ τ2

τ1

exp
(
−
∫ t

τ1

(r (s) + v0 (s)) ds
)

(d(t) + δ (v (t)))dt

+ exp
(
−
∫ τ2

τ1

(r (s) + v0 (s)) ds
)
W (τ2) | Fτ1 ]

for all τ1, τ2 ∈ T with τ1 < τ2, and hence that the process

Mv (t) = βv (t)W (t)−
∫ t

0

βv (s) (d(s) + δ (v (s)))ds

is a Qv-supermartingale for all v ∈ N∗. By the Doob decomposition and
the martingale representation theorem, for each v ∈ N∗ there exists an
increasing real-valued process Av with Av (0) = 0 and a Rn-valued process
ψv with

∫ T
0
|ψv (t)|2 dt <∞ such that

Mv (t) = W (0) +
∫ t

0

ψv (τ)T dwv (τ)−Av (t) .

Since

βv (t)−1

(
Mv (t) +

∫ t

0

βv (s) (d(s) + δ (v (s)))ds
)

= W (t) = β0 (t)−1

(
M0 (t) +

∫ t

0

β0 (s) d(s)ds
)
, (25)

we must have

βv (t)−1
ψv (t) = β0 (t)−1

ψ0 (t)

and∫ t

0

(
δ (v (τ)) + v0W (τ) + βv (τ)−1

ψv (τ)T σ (τ)−1 (
v− (τ)− v0 (τ) 1

))
dτ

−
∫ t

0

βv (τ)−1
dAv (τ) = −

∫ t

0

β0 (τ)−1
dA0 (τ) (26)
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for all v ∈ N∗ and all t ∈ [0, T ]. Now, letting

θ (t)T = β0 (t)−1
ψ0 (t)T σ (t)−1

,

and

α (t) = W (t)−
n∑
k=1

θk (t) ,

we intend to show that (α, θ) is an admissible trading strategy.
Conditions (16) and (17) follow immediately from the definition of W ,

(14), and Assumption 3. Next, observe that the process

C (t) = d0 −W (0) +
∫ t

0

β0 (τ)−1
dA0 (τ)

is nonnegative and increasing, and that we have from (25) and Itô’s lemma

W (t) = W (0) +
∫ t

0

r (τ)W (τ) dτ +
∫ t

0

β0 (τ)−1 (dM0 (τ) + d (τ)β0 (τ) dτ)

= d0 +
∫ t

0

r (τ)W (τ) dτ +
∫ t

0

θ (τ)T σ (τ) dw0 (τ) +
∫ t

0

d (τ) dτ − C (t)

= d0 +
∫ t

0

(
α (τ) r (τ) + θ (τ)T µ (τ)

)
dτ +

∫ t

0

θ (τ)T σ (τ) dw (τ)

+
∫ t

0

d (τ) dτ − C (t) ,

thus (15) is also satisfied, and we are only left to show that (α, θ) take
values in A.
By (26) and the definition of (α, θ), we have

0 ≤
∫ t

0

βv (τ)−1
dAv (τ)

=
∫ t

0

β0 (τ)−1
dA0 (τ) +

∫ t

0

(
δ (v (τ)) + α (τ) v0 (τ) + θ (τ)T v− (τ)

)
dτ.

Since v(∈ N∗) is arbitrary, A is a convex cone and δ is positively homo-
geneous, this implies the existence of a set E having full (λ× P ) measure
(where λ denotes the Lebesgue measure on [0, T ]) such that

δ (v) + α (t, ω) v0 + θ (t, ω)T v− ≥ 0, ∀ (t, ω) ∈ E, v ∈ A.

By Theorem 14.1 in Rockafellar(1970), this implies (α, θ) ∈ A, (λ× P )-
a.e..
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6. EXISTENCE OF OPTIMAL POLICIES

Theorem 5.1 implies that it is possible to reformulate the agent’s invest-
ment problem as

maxV , maxEU (B)

s.t.

EQv [βv (T )B] ≤ d0+EQv

[∫ T

0

βv (t) (δ (v (t)) + d (t)) dt

]
∀v ∈ N∗, (P)

B ≥ 0.

This can be regarded as a convex optimization problem over a closed and
norm-bounded subset of L1 (Q0). Unfortunately L1 (Q0) spaces are not
reflexive, and hence the feasible set in (P) lacks (weak) compactness. To
circumvent this difficulty, all of the existing papers approaching the optimal
consumption problem under constraints using martingale techniques have
focused on a dual minimization problem.

The motivation for the dual problem is the following. Let B∗ denote
the optimal final wealth plan, and suppose that at least one of the budget
constraints in (P) is tight. Since the set {πv : v ∈ N∗} is convex, this sug-
gests the existence of a state-price density πv∗ and a Lagrangian mutiplier
ψ∗ > 0 such that (B∗, ψ∗, v∗) is a saddle point of the map

L (B,ψ, v) = E [U (B)]−ψE

[
πv (T )B −

∫ T

0

πv (t) (δ (v (t)) + d (t)) dt− d0

]
,

(27)
where we maximize with respect to B and minimize with respect to (ψ, v).
Maximizing (27) with respect to B leads to the dual shadow state-price
problem

min
(ψ,v)∈(0,∞)×n∗

J (ψ, v) = E

"
U (ψπv (T ))+ψ

„
d0 +

Z T

0

πv (t) (δ (v (t)) + d (t)) dt

« #
.

(P∗)

From (7)-(13), we have the following proposition:

Proposition 6.1. Suppose that the utility function U(x) satisfies the
Inada conditions in (7) and that there exist constants β ∈ [0, 1] and γ ∈
(0,∞) such that

βU ′ (B) ≥ U ′ (γB) , ∀B ∈ (0,∞) . (28)
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If there exists a solution (ψ∗, v∗) to the dual state price problem (P∗) and

E

[
f (ψ∗πv∗ (T ))πv∗ (T )−

∫ T

0

πv∗ (t) δ (v∗ (t)) dt

]
<∞, (29)

then there exists a constrained optimal wealth B* and the equality

U ′ (B∗) = ψ∗πv∗ (T ) (30)

holds for some ψ∗ > 0, such that

E

[
πv∗ (T ) f (ψ∗πv∗ (T ))−

∫ T

0

πv∗ (t) (d (t) + δ (v∗ (t))) dt

]
= d0. (31)

Conversely, if (30) and (31) hold for some (ψ∗, v∗) ∈ (0,∞)×N∗and some
B∗ ∈ B(P, A), then (ψ∗, v∗) solves the dual problem.

Proof. See Appendix A.

The difficulty in using the duality approach in the presence of a stochastic
income should now be apparent: unless δ ≡ 0, d ≡ 0 (or, more generally, d
is financed by an admissible trading strategy), and the utility function U
has an Arrow-Pratt coefficient of relative risk aversion that is everywhere
strictly less than one, the map v → J(ψ, v) is not convex. If these rather
restrictive assumptions are satisfied, the problem can be relaxed by looking
for a solution in (0,∞) × N (i.e., by allowing the density process to be a
local martingale, rather then a martingale), and the existence of a solution
to (P*) can then be shown using the technique of Cvitanic and Karatzas
(1992).

In the present paper, we depart from the previous literature and show
the existence of an optimal plan by attacking directly the primal problem
(P). We deal with the lack of compactness in the set of feasible terminal
wealth by using the so-called technique of relaxation-projection introduced
by Levin (1976) for optimization in non-reflexive spaces. The following
theorem represents the main result of the paper.

Theorem 6.1. Suppose that:
(i) there exists a B ∈ B(P, A) with E[U(B)] > −∞;
(ii) either U is bounded above on (0,∞), or there exist constants k ≥

0, b ∈ (0, 1) and p > 1 such that

U (x) ≤ k
(
1 + x1−b) , ∀x ∈ (0,∞) , (32)



MARTINGALE AND RELAXATION-PROJECTION METHODS 17

and

ξ−1
0 (T ) ∈ L

p
b (Q0) . (33)

Then there exists a constrained optimal terminal wealth.

Proof. See Appendix B.

7. CHARACTERIZATION OF OPTIMAL POLICIES

While Theorem 6.1 guarantees the existence of an optimal terminal
wealth B∗, it gives no indications as to the nature of such a policy. In
the unconstrained case (i.e., with a single budget constraint ), it follows
immediately from the Lagrangian theory of optimization that the optimal
consumption plan satisfies the Kuhn-Tucker condition

(U ′ (B∗)− ψπ0 (T ))B∗ = 0,

P -a.e. for some Lagarangian multiplier ψ > 0. In other words, the indi-
vidual’s marginal rates of substitution at the optimum equal the unique
state-price density π0 whenever the nonnegativity constraint on terminal
wealth is nonbinding. The following proposition gives a generalization of
this result.

Proposition 7.1. Let B* denote the optimal terminal wealth and sup-
pose that B∗ 6= 0 and that there exists a γ ∈ (0, 1) such that

E [U ′ (γB∗)] <∞. (34)

Then there exists a sequence {ψnπvn} with ψn > 0 and vn ∈ N∗ for all n
such that

(U ′ (B∗)− ψnπvn (T ))B∗ → 0, P-a.e. and in L1(P ). (35)

If in addition

inf
v∈N∗

E [πv (T )B∗] > 0, (36)

then (35) holds with ψn = ψ > 0 for all n.

Proof. Define the subset M and N in L1(P ) by

M = {ψπvB∗ : ψ > 0, v ∈ N∗} ,
N =

{
U ′ (B∗)−m : m ∈M

}
,
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whereM denotes the closure ofM in L1(P ). Arguing by contradiction, sup-
pose that there is no sequence {ψnπvn} such that ψnπvnB

∗ → U ′ (B∗)B∗

in L1(P ). ThenN∩{0} = ∅. Moreover, it is easily verified thatN is convex
and closed in L1(P ). Therefore, it follows from the separating hyperplane
theorem that there exists a ϕ ∈ L∞ (P ) such that

E [U ′ (B∗)B∗ϕ]− ψE [πv (T )B∗ϕ] > 0,

for all v ∈ N∗ and ψ ∈ R+. Letting ϕ = B∗ϕ� ‖ϕ‖L∞ , the above implies

E [U ′ (B∗)ϕ] > 0 ≥ E [πv (T )ϕ] , ∀v ∈ N∗. (37)

But then for each ε ∈ (0, 1− γ)(where γ is the constant of (34)) the terminal
wealth Bε = B∗ + εϕ ≥ γB∗ is A-feasible, and hence it follows from the
optimality of B∗ that

0 ≥ lim
ε↓0

V (Bε)− V (B∗)
ε

= E [U ′ (B∗)ϕ] ,

where the last equality follows from the dominated convergence theorem,
the fact that

|U (Bε)− U (B∗)|
ε

≤ U ′ (γB∗)
|Bε −B∗|

ε
≤ U ′ (γB∗)B∗,

and that the last expression is integrable by (34). This contradicts (37), and
hence establishes (35) in the part concerning convergence in L1(P ). Almost
everywhere convergence can be ensured by passing to a subsequence.

Next, suppose that (36) also holds and let {ψnπvn
B∗} ⊂M be such that

ψnπvnB
∗ → U ′ (B∗)B∗ in L1(P ). Since ψn ‖πvnB

∗‖L1 → ‖U ′ (B∗)B∗‖L1

and ‖πvnB
∗‖L1 is bounded below away from zero, {ψn} is bounded. Hence,

we can assume (by possibly passing to a subsequence) that ψn → ψ > 0
and we are only left to show that ‖ψπvn

B∗ − U ′ (B∗)B∗‖L1 → 0. But this
follows from the inequalities

‖ψπvn
B∗ − U ′ (B∗)B∗‖L1

= ‖(ψ − ψn)πvn
B∗ + ψnπvn

B∗ − U ′ (B∗)B∗‖L1

≤ ‖πvn
B∗‖L1 |ψ − ψn|+ ‖ψnπvn

B∗ − U ′ (B∗)B∗‖L1

≤ (d0 +Kd) |ψ − ψn|+ ‖ψnπvn
B∗ − U ′ (B∗)B∗‖L1 → 0,

where Kd is the constant in (14).

An immediate implication of the previous proposition is that if the opti-
mal consumption plan is strictly positive (as must be the case with infinite
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marginal utility at zero), then, after scaling by a constant, the marginal
utility process for an optimizing agent must be the pointwise limit of a
sequence of state-price densities. We state this result in the next corollary.

Corollary 7.1. If B∗ > 0 a.e. and (34) and (36) hold, then there
exists a ψ > 0 and a sequence {πvn} with vn ∈ N∗ for all n such that

U ′ (B∗) = lim
n→∞

ψπvn
(T ) (38)

for P -almost all ω ∈ Ω.

8. CONCLUDING REMARKS

This paper studies the existence of optimal investment and portfolio rules
given the preference from terminal wealth in the presence of constraints on
portfolio choice and stochastic income. We apply the so-called technique
of relaxation projection for optimization without compactness. Though we
have assumed a state-independent utility function for terminal wealth, the
case of state-dependent utility functions is easily accommodated by our
existence result.

APPENDIX A

This Appendix is devoted to the proof of Proposition 6.1. The argument
is adapted from Cuoco (1997).

Proof (Proposition 6.1). Assume that (ψ∗, v∗) ∈ (0,∞) × n∗ solves
(P∗), and that (29) holds. In accordance with (30), define the terminal
wealth plan B∗ by B∗ = f (ψ∗πv∗ (T )). In order to prove that B∗ is
constrained-optimal, we will proceed in two steps: first we will show that
V (B∗) ≥ V (B) holds for all B ∈ B(P, A) and then that B∗ ∈ B(P, A).

Step 1. Taking B = f(y) in (28), applying f (·) to both sides and iterat-
ing, shows that for all β ∈ (0,∞) there exists a γ ∈ (0,∞) such that

f (βy) ≤ γf (y) ∀y ∈ (0,∞) .

Since δ is bounded above on A, (29) then implies

E [f (ψπv∗ (T ))πv∗ (T )] <∞, (A.1)

for all ψ ∈ (0,∞) .
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By the optimality of ψ∗, we have

0 = lim
ε→0

J (ψ∗ + ε, v∗)− J (ψ∗, v∗)
ε

= E

[
lim
ε→0

U ((ψ∗ + ε)πv∗ (T ))− U ((ψ∗)πv∗ (T ))
ε

]
+E

[
d0 +

∫ T

0

πv∗ (t) (d (t) + δ (v∗ (t))) dt

]

= d0 − E

[
πv∗ (T )B∗ −

∫ T

0

πv∗ (t) (d (t) + δ (v∗ (t))) dt

]
, (A.2)

where the second equality follows from Lebesgue’s dominated convergence
theorem, using (A.1) and the fact that

∣∣∣∣U ((ψ∗ + ε)πv∗ (T ))− U ((ψ∗)πv∗ (T ))
ε

∣∣∣∣
≤ U ((ψ∗ + |ε|)πv∗ (T ))− U ((ψ∗)πv∗ (T ))

|ε|
≤ πv∗ (T ) f ((ψ∗ − |ε|)πv∗ (T ))

≤ πv∗ (T ) f
(
ψ∗

2
πv∗ (T )

)
for |ε| < ψ∗

2 (because U (·) is decreasing and convex, U
′
(x) = −f(x) , and

f(x) is decreasing). By concavity,

U (f (x))− U (B) ≥ x (f (x)−B) ,

it then follows from (22) and (A.2) that, for any terminal wealth B ∈
B(P, A)

V (B∗)− V (B) = E [U (B∗)− U (B)]
= E [U (f (ψ∗πv∗ (T )))− U (B)]
≥ 0.

Hence, B∗ must be optimal provided that it is A-feasible.
Step 2. By the continuity of f and πv∗ , it is clear 0 < B∗ < ∞. Also,

from the inequality

U (1)− z ≤ max
B≥0

[U (B)− zB] = U (f (z))− zf (z) ,
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we have

E
[
U (B∗)−

]
≤ U (1)− + ψ∗E [πv∗ (T )] <∞.

Therefore, we are only left to show that there exists an admissible trading
strategy (α, θ) satisfying (15)-(17) and (α (t) , θ (t)) ∈ A for ∀t.

Define the wealth process W by

W (t) = πv∗ (t)−1
E

[
πv∗ (T )B∗ −

∫ T

t

πv∗ (τ) (d (τ) + δ (v∗ (τ))) dτ | Ft

]

= βv∗ (t)−1
EQv∗

[
βv∗ (T )B∗ −

∫ T

t

βv∗ (τ) (d (τ) + δ (v∗ (τ))) dτ | Ft

]

(the expectation is finite because of (14) and (29)). Clearly, W (T ) = B∗,
and W is bounded below (because of (14) and Assumption 3), so that (16)
and (17) are satisfied. Also, since W (0) = d0 (because of (A.2)), it follows
from the martingale representation theorem that there exists a process ψ
with

∫ T
0
|ψ (t)|2 dt <∞ a.s. such that

βv∗ (t)W (t)−
∫ t

0

βv∗ (τ) (d (τ) + δ (v∗ (τ))) dτ = d0 +
∫ t

0

ψ (τ)T dwv∗ (τ) ,

(A.3)
where wv∗ = w (t) −

∫ t
0
kv∗ (τ) dτ is a standard Brownian motion under

Qv∗ .
Define the trading strategy (α, θ) ∈ Θ by

θ (t)T = βv∗ (t)−1
ψ (t)T σ (t)−1

, (A.4)

and

α (t) = W (t)−
n∑
k=1

θk (t) .

Using (A.3) and Itô’s lemma shows that

W (t) = d0 +
∫ t

0

(r (τ) + v∗0 (τ))W (τ) dτ +
∫ t

0

θ (τ)T σ (τ) dwv∗ (τ)

+
∫ t

0

(d (τ) + δ (v∗ (τ))) dτ

= d0 +
∫ t

0

(
α (τ) (r (τ) + v∗0 (τ)) + θ (τ)T

(
µ (τ) + v∗− (τ)

))
dτ

+
∫ t

0

θ (τ)T σ (τ) dw (τ) +
∫ t

0

(d (τ) + δ (v∗ (τ))) dτ.
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A comparison with (15) then reveals that in order to prove that B∗ ∈
B(P, A) we are only left to verify that

(α (t, ω) , θ (t, ω)) ∈ A, (λ× P )-a.e., (A.5)

and that

α (t, ω) v∗0 (t, ω)+ θ (t, ω)T v∗− (t, ω)+ δ (v∗ (t, ω)) = 0, (λ×P )-a.e.. (A.6)

Fix an arbitrary v ∈ N and define the process

ς (t) =
∫ t

0

(v∗0 (τ)− v0 (τ)) dτ

+
∫ t

0

(
σ (τ)−1 (

v∗− (τ)− v− (τ)− (v∗0 (τ)− v0 (τ)) 1
))T

dwv∗ (τ)

as well as the sequence of stopping times

τn = T ∧ inf{t ∈ [0, T ] : |ς (t)|+ |πv∗ (t)|+ |W (t)| ≥ n,

or
∫ t

0

∣∣∣θ (τ)T σ (τ)
∣∣∣2 dτ ≥ n,

or
∫ t

0

|v∗0 (τ)− v0 (τ)|2 dτ ≥ n,

or
∫ t

0

∣∣∣σ (τ)−1 (
v∗− (τ)− v− (τ)− (v∗0 (τ)− v0 (τ)) 1

)∣∣∣2 dτ ≥ n}.

Then τn ↑ T a.s.. Also, letting

vε,n (t) = v∗(t) + ε [v(t)− v∗(t)] 1{t≤τn},

for ε ∈ (0, 1), we have vε,n ∈ N (because of the convexity of A) and

πvε,n
(t) = πv∗ (t) exp

(
ες (t ∧ τn)

− ε2

2

∫ t∧τn

0

∣∣∣σ (τ)−1 (
v∗− (τ)− v− (τ)− (v∗0 (τ)− v0 (τ)) 1

)∣∣∣2 dτ).
It then follows from the definition of the stopping times τn that

e−2εnπv∗ (t) ≤ πvε,n
(t) ≤ e2εnπv∗ (t) , (A.7)
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and

e−3εnξv∗ (t) ≤ ξvε,n (t) ≤ e3εnξv∗ (t) .

Therefore, ξvε,n
is of class D, and hence vε,n ∈ N ∗ (Jacord and Shiryaev,

1987, Proposition I.1.47).
We will show below that for any v ∈ N ∗ we have

lim
ε→0

J (ψ∗, v∗)− J (ψ∗, vε,n)
ε

≥ ψ∗E

[∫ τn

0

πv∗ (t) (α (t) (v∗0 (t)− v0 (t)) +

θ (t)T (v∗− (t)− v− (t)) + δ(v∗ (t))− δ(v (t)))dt

]
. (A.8)

Since J (ψ∗, vε,n) reaches a minimum at ε = 0, the left-hand side of (A.8)
is nonpositive, and thus so is the right-hand side.

Taking v = v∗ + ρ, ρ ∈ N, it follows from the fact that A is a convex
cone that v ∈ N, and hence (A.8) gives

E

[∫ τn

0

πv∗ (t)
(
α (t) ρ0 (t) + θ (τ)T ρ−(t) + δ(ρ (t))

)
dt

]
≥ 0,

where we have used the subadditivity of δ. Since ρ ∈ N was arbitrary, this
implies the existence of a set E having full measure (λ× P ) such that

α (t, ω) v0 (t, ω) + θ (t, ω)T v− (t, ω) + δ (v (t, ω)) ≥ 0, ∀ (t, ω) ∈ E, v ∈ A.

By Theorem 14.1 in Rockafellar (1970), the above implies (A.5).
On the other hand, for v ≡ 0, (A.8) gives

E

[∫ τn

0

πv∗ (t) (α (t) v∗0 (t) + θ (t)T v∗− (t) + δ(v∗ (t)))dt
]
≤ 0,

and it then follows, using the fact that α (t) v∗0 (t)+θ (t)T v∗− (t)+δ(v∗ (t)) ≥
0 for (α (t, ω) , θ (t, ω)) ∈ A and v∗ (t) ∈ A , that (A.6) also holds. To show
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the inequality in (A.8), we start by observing that∣∣∣∣∣U (ψ∗πv∗ (T ))− U
(
ψ∗πvε,n (T )

)
ε

+ψ∗
∫ T

0

(d(t) + δ (v∗))
πv∗ (t)− πvε,n (t)

ε
dt

∣∣∣∣∣
≤ψ∗

[
f
(
ψ∗e−2nεπv∗ (T )

) ∣∣πvε,n
(T )− πv∗ (T )

∣∣
ε

+
∫ T

0

(d(t) + δ (v∗))

∣∣πv∗ (t)− πvε,n
(t)
∣∣

ε
dt

]

≤ψ∗
[
Knπv∗ (T ) f

(
ψ∗e−2nεπv∗ (T )

)
+Kn

∫ T

0

πv∗ (t) (d(t) + δ (v∗ (t))) dt

]
,

where

Kn = sup
ε∈(0,1)

e2nε − 1
ε

<∞,

and that

πvε,n
(t) (δ (v∗ (t))− δ (v (t)))− ≤ −e2nεπv∗ (t) δ (v∗ (t)) .

It then follows from (29), (31), Lebesgue’s dominated convergence theorem,
the convexity of δ, and Fatou’s lemma that

lim
ε↓0

J (ψ∗, v∗)− J (ψ∗, vε,n)
ε

= lim
ε↓0

E[
U (ψ∗πv∗ (T ))− U

(
ψ∗πvε,n (T )

)
ε

+ ψ∗
∫ T

0

(d(t) + δ (v∗))
πv∗ (t)− πvε,n

(t)
ε

dt

+ ψ∗
∫ T

0

πvε,n (t)
δ (v∗ (t))− δ (vε,n (t))

ε
dt

≥E

[
lim
ε↓0

U (ψ∗πv∗ (T ))− U
(
ψ∗πvε,n

(T )
)

ε

]

+ ψ∗E

[∫ T

0

lim
ε↓0

[
(d(t) + δ (v∗))

πv∗ (t)− πvε,n
(t)

ε

]
dt

]
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+ ψ∗ lim
ε↓0

E

[∫ T

0

πvε,n
(t)

δ (v∗ (t))− δ (vε,n (t))
ε

dt

]

=E

[
ψ∗πv∗ (T )B∗ς (τn)− ψ∗

∫ T

0

πv∗ (t) ς (t ∧ τn) (d(t) + δ (v∗ (t))) dt

]

+ ψ∗ lim
ε↓0

E

[∫ τn

0

πvε,n (t) δ (v∗ (t))− δ (v (t)) dt
]

≥ψ∗E
[
πv∗ (τn)W (τn) ς (τn)−

∫ τn

0

πv∗ (t) ς (t ∧ τn) (d(t) + δ (v∗ (t))) dt
]

+ ψ∗E

[∫ τn

0

πv∗ (t) δ (v∗ (t))− δ (v (t)) dt
]
. (A.9)

On the other hand, using (A.3) and (A.4), Itô’s lemma shows that

βv∗ (τn)W (τn) ς (τn)−
∫ τn

0

βv∗ (t) (d(t) + δ (v∗ (t))) dt

=
∫ τn

0

βv∗ (t)
(
W (t)σ (t)−1 (

v∗− (t)− v− (t)− (v∗0 (t)− v0 (t)) 1
)

+ ς (t) θ (t)T σ (t)
)
dwv∗ (t)

+
∫ τn

0

βv∗ (t)
(
α (t) (v∗0 (t)− v0 (t)) + θ (t)T

(
v∗− (t)− v− (t)

))
dt,

Since the stochastic integral in the above expression is a Qv∗ -martingale,
we have

E

[
πv∗ (τn)W (τn) ς (τn)−

∫ τn

0

πv∗ (t) (d(t) + δ (v∗ (t))) dt
]

= E

[∫ τn

0

πv∗ (t)
(
α (t) (v∗0 (t)− v0 (t)) + θ (t)T

(
v∗− (t)− v− (t)

))
dt

]
.

Substituting the above expression in (A.9) yields (A.8). This shows that
B∗ ∈ B(P, A) and hence that B∗ is optimal.
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To prove the converse, suppose that (30) and (31) are satisfied by some
B∗ ∈ B(P, A). By the argument above, we have for all (ψ, v) ∈ (0,∞)×N∗

J (ψ, v) = E

[
U (ψπv (T )) + ψ

(
d0 +

∫ T

0

πv (t) (d(t) + δ (v (t))) dt

)]
≥ E

[
U (ψ∗πv∗ (T )) +B∗ψ∗πv∗ (T )

+ ψ

(
d0 +

∫ T

0

πv (t) (d(t) + δ (v (t))) dt

)
− πv (T )B∗

]

≥ E

[
U (ψ∗πv∗ (T )) + ψ∗

(
d0 +

∫ T

0

πv∗ (t) (d(t) + δ (v∗ (t))) dt

)]
= J (ψ∗, v∗) ,

where the last inequality follows from (22) and (31). This shows that
(ψ∗, v∗) solves (P∗).

APPENDIX B

This appendix is devoted to the proof of Theorem 6.1. The proof is based
on the following result, due to Levin (1976) (cf. also Fougeres(1979)).

Lemma B.1. Let F : L1 (S,Σ, µ) → R ∪ {+∞} be a convex functional,
where (S,Σ, µ) is a measure space with µ finite and nonnegative and Σ
complete. If F is lower semicontinuous in the topology τ of convergence in
measure, then it attains a minimum on any convex set K ⊂ L1 (S,Σ, µ)
that is τ -closed and norm-bounded.

Proof. See Levin (1976).

Lemma B.2. Let K denote the set of terminal wealth satisfying (22)

K =


B : B ≥ 0, EQv [βv(T )B] ≤ d0 + EQv

»Z T

0

βv (t) (δ (v (t)) + d (t)) dt

–
, ∀v ∈ N∗

ff
.

Then K is a norm-bounded subset of L1 (Q0).

Proof. ∀B ∈ K, since 0 ∈ N∗, δ ≤ 0 and r ≤ rB by Assumption 1, we
have

EQ0 [β0 (T )B] ≤ d0 + EQ0

[∫ T

0

β0 (t) (δ (v (t)) + d (t)) dt

]
≤ Kd + d0,
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so

EQ0 [B] ≤ EQ0
[
erBTβ0 (T )B

]
≤ erBT (Kd + d0) .

Lemma B.3. Under the assumption of Theorem 6.1, K is convex and
closed in the topology of convergence in Q0-measure.

Proof. We start by noticing that, under the assumptions of Theorem
6.1, the requirement that min

(
E (U (W (T )))+ , E (U (W (T )))−

)
< +∞

is satisfied by all B ∈ L1
+ (Q0), since this implies B <∞ a.s., and

E [U (B)]+ ≤ kE
[
1 +B1−b]

≤ k + kEQ0

[
ξ0 (T )−1

B1−b
]

≤ k + k
(
EQ0

[
ξ0 (T )−

1
b

])b (
EQ0 [B]

)1−b
< ∞, (B.1)

for some k ≥ 0, b ∈(0,1) (by Holder’s inequality and Lemma B.2). The con-
vexity ofK is now immediately verified and the closure follows from Fatou’s
lemma and the fact that any sequence converging in Q0-measure has a sub-
sequence converging Q0-a.e..

We next record some properties of the utility functional U .

Lemma B.4. V is concave:

V (αB1 + (1− α)B2) ≥ αV (B1) + (1− α)V (B2) .

Lemma B.5. Let V (B) ≡ E[U(B)], then, under the assumptions of The-
orem 6.1, V is bounded above on K and upper semicontinuous with respect
to convergence in Q0-measure: i.e., for every {Bn} ⊂ K and B ∈ L1 (Q0)
with Bn → B in measure, we have V (B) ≥ lim sup

n→∞
V (Bn).

Proof. The fact that V is bounded above on K follows from (A1) and
the fact that K is bounded in the L1 (Q0)-norm.

Next, suppose that V is not upper semicontinuous on K. Then there
exists an a ∈ R, a sequence {Bn} ⊂ K, and a B ∈ K such that Bn → B
in measure and

V (B) < a ≤ V (Bn) , for all n. (B.2)
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By passing to a subsequence, we can assume without loss of generality that
Bn → B a.e.. We will show that, under the assumptions of Theorem 6.1,
the family {

ξ0 (T )−1
U (Bn)

}
(B.3)

is Q0-uniformly integrable. It then follows from Fatou’s lemma that

V (B) = EQ0 [ξ0(T )−1U(B)]
≥ lim sup

n→∞
EQ0

[
ξ0(T )−1U(Bn)

]
= lim sup

n→∞
V (Bn).

This contradicts (B.2) and thus establishes the upper semicontinuity of V .
Finally, to prove our claim that the family in (B.3) is Q0-uniformly inte-

grable, we observe that this is immediate if U is bounded above. Otherwise,
we have

U
(
B+
n

)
≤ k

(
1 +B1−b

n

)
,

and it is enough to show that

sup
n
EQ0

[(
ξ0(T )−1B1−b

n

)p]
<∞

holds for some p > 1. Taking p = p
b+p(1−b) (where b ∈ (0, 1) and p(> 1)

are the constants in (32) and (33) ), we have from Holder’s inequality

EQ0

[
ξ0(T )pB(1−b)p

n

]
≤
(
EQ0

[
ξ0(T )−

p
1−p(1−b)

])1−p(1−b) (
EQ0 [Bn]

)p(1−b)
=
(
EQ0

[
ξ0 (T )−

p
b

])1−p(1−b) (
EQ0 [Bn]

)p(1−b)
< ∞.

Proof (Theorem 6.1). Consider the map I : L1 (Q0) → R ∪ {+∞}
defined by I(B) = −V (B), if B ∈ K; I(B) =+∞, otherwise.

Since K is convex and closed with respect to convergence in measure, it
follows from the concavity V and Lemma B.5 that I is convex and lower
semicontinuous in measure. Also, K is nonempty and bounded in norm.
Therefore, it follows from Lemma B.1 and the fact that I(B) <∞ for some
B ∈ K, that there exists a B∗ ∈ K such that I (B∗) ≤ I (B) for all B ∈
L1 (Q0). This implies that B∗ solves (P).
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