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ON THE SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS

BY ROBERT J. BARRO AND TAO JIN1

The coefficient of relative risk aversion is a key parameter for analyses of behavior
toward risk, but good estimates of this parameter do not exist. A promising place for
reliable estimation is rare macroeconomic disasters, which have a major influence on
the equity premium. The premium depends on the probability and size distribution of
disasters, gauged by proportionate declines in per capita consumption or gross domes-
tic product. Long-term national-accounts data for 36 countries provide a large sample
of disasters of magnitude 10% or more. A power-law density provides a good fit to the
size distribution, and the upper-tail exponent, α, is estimated to be around 4. A higher
α signifies a thinner tail and, therefore, a lower equity premium, whereas a higher co-
efficient of relative risk aversion, γ, implies a higher premium. The premium is finite if
α > γ. The observed premium of 5% generates an estimated γ close to 3, with a 95%
confidence interval of 2 to 4. The results are robust to uncertainty about the values
of the disaster probability and the equity premium, and can accommodate seemingly
paradoxical situations in which the equity premium may appear to be infinite.

KEYWORDS: Power law, rare disaster, equity premium, risk aversion.

THE COEFFICIENT OF RELATIVE RISK AVERSION, γ, is a key parameter for anal-
yses of behavior toward risk, but good estimates of this parameter do not ex-
ist. A promising area for reliable estimation is rare macroeconomic disasters,
which have a major influence on the equity premium; see Rietz (1988), Barro
(2006), and Barro and Ursua (2008). For 17 countries with long-term data on
returns on stocks and short-term government bills, the average annual (arith-
metic) real rates of return were 0.081 on stocks and 0.008 on bills (Barro and
Ursua (2008, Table 5)). Thus, if we approximate the risk-free rate by the av-
erage real bill return, the average equity premium was 0.073. An adjustment
for leverage in corporate financial structure, using a debt–equity ratio of 0.5,
implies that the unlevered equity premium averaged around 0.05.

Previous research (Barro and Ursua (2008)) sought to explain an equity pre-
mium of 0.05 in a representative–agent model calibrated to fit the long-term
history of macroeconomic disasters for up to 36 countries. One element in
the calibration was the disaster probability, p, measured by the frequency of
macroeconomic contractions of magnitude 10% or more. Another feature was
the size distribution of disasters, gauged by the observed histogram in the range
of 10% and above. Given p and the size distribution, a coefficient of relative
risk aversion, γ, around 3.5 accorded with the target equity premium.

The present paper shows that the size distribution of macroeconomic disas-
ters can be characterized by a power law in which the upper-tail exponent, α, is
the key parameter. This parametric approach generates new estimates of the
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coefficient of relative risk aversion, γ, needed to match the target equity pre-
mium. We argue that the parametric procedure can generate more accurate
estimates than the sample-average approach because of selection problems re-
lated to missing data for the largest disasters. In addition, confidence sets for
the power-law parameters translate into confidence intervals for the estimates
of γ.

Section 1 reviews the determination of the equity premium in a repre-
sentative–agent model with rare disasters. Section 2 specifies a familiar, single
power law to describe the size distribution of disasters and applies the results
to estimate the coefficient of relative risk aversion, γ. Section 3 generalizes to
a double power law to get a better fit to the observed size distribution of dis-
asters. Section 4 shows that the results are robust to reasonable variations in
the estimated disaster probability, the target equity premium, and the thresh-
old for disasters (set initially at 10%). Section 5 considers possible paradoxes
involving an infinite equity premium. Section 6 summarizes the principal find-
ings, with emphasis on the estimates of γ.

1. THE EQUITY PREMIUM IN A MODEL WITH RARE DISASTERS

Barro (2009) worked out the equity premium in a Lucas (1978) tree model
with rare but large macroeconomic disasters. (Results for the equity premium
are similar in a model with a linear, AK , technology, in which saving and in-
vestment are endogenous.) In the Lucas-tree setting, (per capita) real gross
domestic product (GDP), Yt , and consumption, Ct = Yt , evolve as

log(Yt+1)= log(Yt)+ g + ut+1 + vt+1�(1)

The parameter g ≥ 0 is a constant that reflects exogenous productivity growth.
The random term ut+1, which is independent and identically distributed (i.i.d.)
normal with mean 0 and variance σ2, reflects “normal” economic fluctuations.
The random term vt+1 picks up low-probability disasters, as in Rietz (1988)
and Barro (2006). In these rare events, output and consumption jump down
sharply. The probability of a disaster is the constant p ≥ 0 per unit of time. In
a disaster, output contracts by the fraction b, where 0 < b≤ 1. The distribution
of vt+1 is given by

probability 1 −p: vt+1 = 0�

probability p: vt+1 = log(1 − b)�

The disaster size, b, follows some probability density function. In previous re-
search, the density for b was gauged by the observed histogram. The present
analysis specifies the form of this distribution—as a power law—and estimates
the parameters, including the exponent of the upper tail. Note that the ex-
pected growth rate, g∗, of consumption and GDP is

g∗ = g + (1/2) · σ2 −p · Eb�
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1569

where Eb is the mean disaster size.
Barro (2009) showed that, with a representative agent with Epstein–Zin

(1989) and Weil (1990) preferences, the formula for the unlevered equity pre-
mium, when the period length approaches zero, is

re − rf = γσ2 +p · E
{
b · [(1 − b)−γ − 1]}�(2)

where re is the expected rate of return on unlevered equity (a claim on ag-
gregate consumption flows), rf is the risk-free rate, and γ is the coefficient of
relative risk aversion.2 The term in curly brackets has a straightforward inter-
pretation under power utility, where γ equals the reciprocal of the intertem-
poral elasticity of substitution (IES) for consumption. Then this term is the
product of the proportionate decline in equity value during a disaster, b, and
the excess of marginal utility of consumption in a disaster state compared to
that in a normal state, (1 − b)−γ − 1. Note that in the present setting, the pro-
portionate fall in equity value during a disaster, b, equals the proportionate fall
in consumption and GDP during the disaster.

Equation (2) can be expressed as

re − rf = γσ2 +p · [E(1 − b)−γ − E(1 − b)1−γ − Eb]�(3)

Equation (3) shows that the key properties of the distribution of b are the
expectations of the variable 1/(1 − b) taken to the powers γ and γ − 1. (The
Eb term has a minor impact.)

Barro and Ursua (2008) studied macroeconomic disasters by using long-term
annual data for real per capita consumer expenditure, C, for 24 countries and
real per capita GDP (henceforth, called GDP) for 36 countries.3 These data
go back at least to 1914 and as far back as 1870, depending on availability,
and end in 2006. The annual time series, including sources, are available at
www.economics.harvard.edu/faculty/barro/data_sets_barro.

Barro and Ursua (2008) followed Barro (2006) by using an NBER (National
Bureau of Economic Research) -style peak-to-trough measurement of the sizes
of macroeconomic contractions. Starting from the annual time series, propor-
tionate contractions in C and GDP were computed from peak to trough over
periods of 1 or more years, and declines by 10% or greater were considered.
This method yielded 99 disasters for C (for 24 countries) and 157 for GDP

2The present analysis assumes that the representative agent’s relative risk aversion is constant.
Empirical support for this familiar specification appears in Brunnermeier and Nagel (2008) and
Chiappori and Paiella (2008).

3This approach assumes that the same process for generating macroeconomic disasters and
the same model of household risk aversion apply to all countries at all points in time. In general,
reliable estimation of parameters for a rare-disasters model requires a lot of data coming from
a population that can be viewed as reasonably homogeneous. However, Barro and Ursua (2008)
found that results on the determinants of the equity premium were similar if the sample were
limited to Organization for Economic Cooperation and Development (OECD) countries.
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1570 R. J. BARRO AND T. JIN

(36 countries). The average disaster sizes, subject to the threshold of 10%,
were similar for the two measures: 0.215 for C and 0.204 for GDP. The mean
durations of the disasters were also similar: 3.6 years for C and 3.5 years for
GDP. The list of the disaster events—by country, timing, and size—is given in
Barro and Ursua (2008, Tables C1 and C2).4

Equation (1) is best viewed as applying to short periods, approximating con-
tinuous time. In this setting, disasters arise as downward jumps at an instant
of time, and the disaster size, b, has no time units. In contrast, the underly-
ing data on C and GDP are annual flows. In relating the data to the theory,
there is no reason to identify disaster sizes, b, with large contractions in C
or GDP observed particularly from one year to the next. In fact, the major
disaster events—exemplified by the world wars and the Great Depression—
clearly feature cumulative declines over several years, with durations of varying
length. In Barro (2006) and Barro and Ursua (2008), the disaster jump sizes, b,
in the continuous-time model—corresponding to equation (3) for the equity
premium—were approximated empirically by the peak-to-trough measures of
cumulative, proportionate decline. Barro (2006, Section V) showed that this
procedure would be reasonably accurate if the true model were one with dis-
crete periods with length corresponding to the duration of disasters (all with
the same duration, say 3 1

2 years).
The peak-to-trough method for gauging disaster sizes has a number of short-

comings, addressed in ongoing research by Nakamura, Steinsson, Barro, and
Ursua (2011). In this work, the underlying model features a probability per
year, p, of entering into a disaster state. (Disaster events are allowed to be
correlated across countries, as in the world wars and the Great Depression.)
Disasters arise in varying sizes (including occasional bonanzas), and the disas-
ter state persists stochastically. This specification generates frequency distribu-
tions for the cumulative size and duration of disasters. In addition, as in Gourio
(2008), post-disaster periods can feature recoveries in the form of temporarily
high growth rates.5

The most important implication of Nakamura et al. (2011) for the equity
premium comes from the recoveries. Since, on average, only half the decline
in consumption during a disaster turns out to be permanent, the model’s pre-
dicted equity premium falls short of the value in equation (3). The other ex-
tensions have less influence on the equity premium, although the stochastic
duration of disasters matters because of effects on the correlation between
consumption growth and stock returns during disasters.

4These data on disaster sizes are the ones used in the current study, except for a few minor
corrections. The values used are in the Supplemental Material (Barro and Jin (2011)).

5One nonissue (raised by Constantinides (2008, pp. 343–344) and Donaldson and Mehra
(2008, p. 84)) is the apparent mismatch between the units for rates of return—per year—and
the measurement of disaster sizes by cumulative declines over multiple years (with a mean dura-
tion around 3 1

2 years). As already noted, the peak-to-trough measures of macroeconomic decline
are approximations to the model’s jump declines, which have no time units.
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1571

FIGURE 1.—Histogram of the empirical density of transformed C disasters and the density
estimated by the single power law. The threshold is z0 = 1�105, corresponding to b = 0�095. For
the histogram, multiplication of the height on the vertical axis by the bin width of 0.04 gives the
fraction of the total observations (99) that fall into the indicated bin. The results for the single
power law for C, shown by the curve, correspond to Table I.

The present analysis uses the peak-to-trough measures of declines in C and
GDP to generate an empirical distribution of disaster sizes, b. Figures 1 and 2
show the corresponding histograms for transformed disaster sizes, 1/(1 − b),
for C and GDP, respectively. The findings in Nakamura et al. (2011) suggest
that these measures will be satisfactory for characterizing the distribution of
disaster sizes, but that some downward adjustment to the equity premium in
equation (3) would be appropriate to account particularly for the partly tem-
porary nature of the typical disaster.

As in previous research, the estimated disaster probability, p, equals the ra-
tio of the number of disasters to the number of nondisaster years. This calcula-
tion yields p = 0�0380 per year for C and p = 0�0383 for GDP. Thus, disasters
(macroeconomic contractions of 10% or more) typically occur around three
times per century. The United States experience for C is comparatively mild,
featuring only two contractions of 10% or more over 137 years—with troughs
in 1921 and 1933. However, for GDP, the U.S. data show five contractions of
10% or more, with troughs in 1908, 1914, 1921, 1933, and 1947.6

6The 1947 GDP contraction was associated with the demobilization after World War II and
did not involve a decline in C. The 1908 and 1914 GDP contractions featured declines in C, but
not up to the threshold of 10%.
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1572 R. J. BARRO AND T. JIN

FIGURE 2.—Histogram of the empirical density of transformed GDP disasters and the density
estimated by the single power law. The threshold is z0 = 1�105, corresponding to b = 0�095. For
the histogram, multiplication of the height on the vertical axis by the bin width of 0.04 gives the
fraction of the total observations (157) that fall into the indicated bin. The results for the single
power law for GDP, shown by the curve, correspond to Table I.

Barro and Ursua (2008, Tables 10 and 11) used the observed histograms for
disaster sizes from the C and GDP data (Figures 1 and 2) to compute the ex-
pectation (that is, the sample average) of the expression in brackets on the right
side of equation (3) for alternative coefficients of relative risk aversion, γ. The
resulting values were multiplied by the estimated p to calculate the disaster
term on the right side of the equation. The other term on the right side, γσ2,
was computed under the assumption σ = 0�02 per year. However, as in Mehra
and Prescott (1985), this term was trivial, compared to the equity premium of
around 0.05, for plausible values of γ (even with higher, but still reasonable,
values of σ). Hence, the disaster term ended up doing almost all the work in
explaining the equity premium. A key finding was that a γ around 3.5 got the
model’s equity premium into the neighborhood of the target value of 0.05.

2. SINGLE-POWER-LAW DISTRIBUTION

We work with the transformed disaster size

z ≡ 1/(1 − b)�

which is the ratio of normal to disaster consumption or GDP. This variable
enters into the formula for the equity premium in equation (3). The thresh-
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1573

old for b, taken to be 0.095, translates into one for z of z0 = 1�105. As b ap-
proaches 1, z approaches ∞, a limiting property that accords with the usual
setting for a power-law distribution.

We start with a familiar, single power law, which specifies the density func-
tion as

f (z)= Az−(α+1)(4)

for z ≥ z0, where A> 0 and α > 0. The condition that the density integrate to
1 from z0 to ∞ implies

A= αzα
0 �(5)

The power-law distribution in equation (4) has been applied widely in
physics, economics, computer science, ecology, biology, astronomy, and so
on. For a review, see Mitzenmacher (2004a). Gabaix (2009) provided exam-
ples of power laws in economics and finance, and discussed forces that can
generate these laws. The examples include sizes of cities (Gabaix and Ioan-
nides (2004)), stock-market activity (Gabaix, Gopikrishnan, Plerou, and Stan-
ley (2003, 2006)), chief executive officer compensation (Gabaix and Landier
(2008)), and firm size (Luttmer (2007)). The power-law distribution has been
given many names, including heavy-tail distribution, Pareto distribution, Zip-
fian distribution, and fractal distribution.

Pareto (1897) observed that, for large populations, a graph of the logarithm
of the number of incomes above a level x against the logarithm of x yielded
points close to a straight line with slope −α. This property corresponds to
a density proportional to x−(α+1); hence, Pareto’s α corresponds to ours in
equation (4). The straight-line property in a log–log graph can be used to es-
timate α, as was done by Gabaix and Ibragimov (2011) using least squares.
A more common method uses maximum-likelihood estimation (MLE), follow-
ing Hill (1975). We use MLE in our study.

In some applications, such as the distribution of income, the power law gives
a poor fit to the observed frequency data over the whole range, but provides
a good fit to the upper tail.7 In many of these cases, a double power law—with
two different exponents over two ranges of z—fits the data well. For uses of
this method, see Reed (2003) on the distribution of income and Mitzenmacher
(2004b) on computer file sizes. The double power law requires estimation of
a cutoff value, δ, for z, above which the upper-tail exponent, α, for the usual
power law applies. For expository purposes, we begin with the single power
law, but problems in fitting aspects of the data eventually motivate a switch to
the richer specification.

7There have been many attempts to explain this Paretian tail behavior, including Champer-
nowne (1953), Mandelbrot (1960), and Reed (2003).
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1574 R. J. BARRO AND T. JIN

The single-power-law density in equations (4) and (5) implies that the equity
premium in equation (3) is given by

re − rf = γσ2 +p ·
{(

α

α− γ

)
zγ

0(6)

−
(

α

α+ 1 − γ

)
zγ−1

0 +
(

α

α+ 1

)
·
(

1
z0

)
− 1

}

if α> γ. (This formula makes no adjustment for the partially temporary nature
of disasters, as described earlier.) For given p and z0, the disaster term on the
right side involves a race between γ, the coefficient of relative risk aversion,
and α, the tail exponent. An increase in γ raises the disaster term, but a rise in α
implies a thinner tail and, therefore, a smaller disaster term. If α ≤ γ, the tail
is sufficiently thick that the equity premium is infinite. This result corresponds
to a risk-free rate, rf , of −∞. We discuss these possibilities later. For now, we
assume α> γ.

We turn now to estimation of the tail exponent, α. When equation (4) ap-
plies, the log likelihood for N independent observations on z (all at least as
large as the threshold, z0) is

log(L)= N · [α · log(z0)+ log(α)]− (α+1) · [log(z1)+· · ·+ log(zN)]�(7)

where we used the expression for A from equation (5). The MLE condition
for α follows readily as

N/α = log(z1/z0)+ · · · + log(zN/z0)�(8)

We obtained standard errors and 95% confidence intervals for the estimate
of α from bootstrap methods.8

Table I shows that the point estimate of α for the 99 C disasters is 6.27, with
a standard error of 0.81 and a 95% confidence interval of (4�96�8�12). Results
for the 157 GDP disasters are similar: the point estimate of α is 6.86, with
a standard error of 0.76 and a 95% confidence interval of (5�56�8�48).

Given an estimate for α—and given σ = 0�02� z0 = 1�105, and a value for p
(0.0380 for C and 0.0383 for GDP)—we need only a value for γ in equation (6)
to determine the predicted equity premium, re − rf . To put it another way, we
can find the value of γ needed to generate re − rf = 0�05 for each value of α.
(The resulting γ has to satisfy γ < α for re − rf to be finite.) In Table I, the
point estimate for α of 6.27 from the single power law for the C data requires
γ = 3�97. The corresponding standard error for the estimated γ is 0.51, with

8See Efron and Tibshirani (1993). We get similar results based on −2 · log(likelihood ratio) be-
ing distributed asymptotically as a chi-squared distribution with 1 degree of freedom (see Greene
(2002)).
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1575

TABLE I

SINGLE AND DOUBLE POWER LAWS; THRESHOLD IS z0 = 1�105a

Parameter Point Estimate Standard Error 95% Confidence Interval

C Data (99 disasters)
Single power law

α 6.27 0.81 (4�96�8�12)
γ 3.97 0.51 (3�13�5�13)

Double power law
α 4.16 0.87 (2�66�6�14)
β 10.10 2.40 (7�37�15�17)
δ 1.38 0.13 (1�24�1�77)
γ 3.00 0.52 (2�16�4�15)

GDP Data (157 disasters)
Single power law

α 6.86 0.76 (5�56�8�48)
γ 4.33 0.48 (3�50�5�33)

Double power law
α 3.53 0.97 (2�39�6�07)
β 10.51 3.81 (8�67�20�98)
δ 1.47 0.15 (1�21�1�69)
γ 2.75 0.56 (2�04�4�21)

aThe single power law, given by equations (4) and (5), applies to transformed disaster sizes, z ≡ 1/(1 − b), where b
is the proportionate decline in C (real personal consumer expenditure per capita) or real GDP (per capita). Disasters
are at least as large as the threshold, z0 = 1�105, corresponding to b ≥ 0�095. The table shows the maximum-likelihood
estimate of the tail exponent, α. The standard error and 95% confidence interval come from bootstrap methods. The
corresponding estimates of γ, the coefficient of relative risk aversion, come from calculating the values needed to
generate an unlevered equity premium of 0.05 in equation (6) (assuming σ = 0�02 and p = 0�0380 for C and 0.0383 for
GDP). For the double power law, given by equations (10)–(12), the table shows the maximum-likelihood estimates of
the two exponents, α (above the cutoff) and β (below the cutoff), and the cutoff value, δ. The corresponding estimates
of γ come from calculating the values needed to generate an unlevered equity premium of 0.05 in a more complicated
version of equation (6).

a 95% confidence interval of (3�13�5�13). For the GDP data, the point estimate
of γ is 4.33, with a standard error of 0.48 and a 95% confidence interval of
(3�50�5�33).

To assess these results, we now evaluate the fit of the single power law. Fig-
ure 1 compares the histogram for the C disasters with the frequency distribu-
tion implied by the single power law in equations (4) and (5), using z0 = 1�105
and α= 6�27 from Table I. An important inference is that the single power law
substantially underestimates the frequency of large disasters. Similar results
apply for GDP in Figure 2.

The failures in the single power law are clearer in diagrams for cumulative
densities. The straight lines in Figures 3 and 4 show, for C and GDP, respec-
tively, fitted logs of probabilities that transformed disaster sizes exceed the val-
ues shown on the horizontal axes. The lines connecting the points show logs of
normalized ranks of disaster sizes (as in Gabaix and Ibragimov (2011)). If the
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1576 R. J. BARRO AND T. JIN

FIGURE 3.—Estimated log-scale tail distribution and log of transformed ranks of C disas-
ter sizes versus log of transformed C disaster sizes. The straight line corresponding to the log-
scale tail distribution comes from the estimated single power law for C in Table I. The ranks of
the disaster sizes are transformed as log[(rank − 1/2)/(N − 1/2)], in accordance with Gabaix
and Ibragimov (2011). The lines connecting these points should—if the estimated power law is
valid—converge pointwise in probability to the log-scale tail distribution, as N approaches infin-
ity.

FIGURE 4.—Estimated log-scale tail distribution and log of transformed ranks of GDP disaster
sizes versus log of transformed GDP disaster sizes. The straight line corresponding to the log-
scale tail distribution comes from the estimated single power law for GDP in Table I. See note to
Figure 3 for further information.
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1577

specified single power law were valid, the two graphs in each figure should be
close to each other over the full range of z. However, the figures demonstrate
that the single power laws underestimate the probabilities of being far out in
the upper tails.

One way to improve the fits is to allow for a smaller tail exponent at high
disaster sizes by generalizing to a double power law. This form specifies an
upper-tail exponent, α, that applies for z at or above a cutoff value, δ ≥ z0,
and a lower-tail exponent, β, that applies below the cutoff value for z0 ≤ z < δ.
This generalization requires estimation of three parameters: the exponents, α
and β, and the cutoff, δ. We still treat the threshold, z0, as known and equal
to 1.105. We should note that the critical parameter for the equity premium is
the upper-tail exponent, α. The lower-tail exponent, β, is unimportant; in fact,
the distribution need not follow a power law in the lower part. However, we
have to specify a reasonable form for the lower portion to estimate the cutoff,
δ, which influences the estimate of α.

3. DOUBLE-POWER-LAW DISTRIBUTION

The double-power-law distribution, with exponents β and α, takes the form

f (z)=
⎧⎨
⎩

0� if z < z0,
Bz−(β+1)� if z0 ≤ z < δ,
Az−(α+1)� if δ≤ z,

(9)

where β�α > 0, A�B > 0, z0 > 0 is the known threshold, and δ ≥ z0 is the
cutoff separating the lower and upper parts of the distribution. The conditions
that the density integrate to 1 over [z0, ∞) and that the densities be equal just
to the left and right of δ imply

B =Aδβ−α�(10)

1
A

= δβ−α

β
(z−β

0 − δ−β)+ δ−α

α
�(11)

The single power law in equations (4) and (5) is the special case of equations
(9)–(11) when β= α.

The position of the cutoff, δ, determines the number, K, among the total
observations, N , that lie below the cutoff. The remaining N −K observations
are at or above the cutoff. Therefore, the log likelihood can be expressed as
a generalization of equation (7) as

log(L) = N · log(A)+K · (β− α) · log(δ)(12)

− (β+ 1) · [log(z1)+ · · · + log(zK)]
− (α+ 1) · [log(zK+1)+ · · · + log(zN)]�

where A satisfies equation (11).
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1578 R. J. BARRO AND T. JIN

We use maximum likelihood to estimate α, β, and δ. One complication is
that small changes in δ cause discrete changes in K when one or more obser-
vations lie at the cutoff. These jumps do not translate into jumps in log(L)
because the density is equal just to the left and right of the cutoff. However,
jumps arise in the derivatives of log(L) with respect to the parameters. This is-
sue does not cause problems in finding numerically the values of (α�β�δ) that
maximize log(L) in equation (12). Moreover, we get virtually the same answers
if we rely on the first-order conditions for maximizing log(L) calculated while
ignoring the jump problem for the cutoff. These first-order conditions are gen-
eralizations of equation (8).9

In Table I, the sections labeled double power law show the point estimates
of (α�β�δ) for the C and GDP data. We again compute standard errors and
95% confidence intervals using bootstrap methods. A key finding is that the
upper-tail exponent, α, is estimated to be much smaller than the lower-tail
exponent, β. For example, for C, the estimate of α is 4.16, standard error equal
to 0.87, with a confidence interval of (2�66�6�14), whereas that for β is 10.10,
standard error equal to 2.40, with a confidence interval of (7�37�15�17). The
estimates reject the hypothesis α = β in favor of α < β at low p-values (for C
and GDP).

Table I shows that the estimated cutoff value, δ, for the C disasters is 1.38; re-
call that this value corresponds to the transformed disaster size, z ≡ 1/(1 − b).
The corresponding cutoff for b is 0.275. With this cutoff, 77 of the C crises
fall below the cutoff, whereas 22 are above. The corresponding cutoff for b
with the GDP crises is 0.320, implying that 136 events fall below the cutoff,
whereas 21 are above. Despite the comparatively small number of crises above
the cutoffs, we know from previous research (Barro and Ursua (2008, Tables 10
and 11)) that the really large crises have the main influence on the equity pre-
mium. That assessment still holds for the present analysis.

Figure 5 compares the histogram for the C disasters with the frequency
distribution implied by the double power law in equations (9)–(11), using
z0 = 1�105, α = 4�16, β = 10�10, and δ = 1�38 from Table I. Unlike the single
power law in Figure 1, the double power law accords well with the histogram.
Results are similar for the GDP data (not shown). Figures 6 and 7 provide
corresponding information for cumulative densities. Compared with the single

9The expressions are

1
α

=
(

1
N −K

)
·
[

log
(
zK+1

δ

)
+ · · · + log

(
zN

δ

)]
�

α ·
[

log
(
zK+1

z0

)
+ · · · + log

(
zN

z0

)]
+β ·

[
log

(
z1

z0

)
+ · · · + log

(
zK

z0

)]
=N�

δ

z0
=

[
Nα+K · (β− α)

α · (N −K)

]1/β

�
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1579

FIGURE 5.—Histogram of the empirical density of transformed C disasters and the density
estimated by the double power law (z0 = 1�105). For the histogram, multiplication of the height
shown on the vertical axis by the bin width of 0.04 gives the fraction of the total observations (99)
that fall into the indicated bin. The results for the double power law for C, shown by the curve,
are based on Table I.

FIGURE 6.—Estimated log-scale tail distribution and log of transformed ranks of C disaster
sizes versus log of transformed C disaster sizes. The line with two segments corresponding to the
log-scale tail distribution comes from the estimated double power law for C in Table I. See note
to Figure 3 for further information.
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1580 R. J. BARRO AND T. JIN

FIGURE 7.—Estimated log-scale tail distribution and log of transformed ranks of GDP disaster
sizes versus log of transformed GDP disaster sizes. The line with two segments corresponding to
the log-scale tail distribution comes from the estimated double power law for GDP in Table I. See
note to Figure 3 for further information.

power laws in Figures 3 and 4, the double power laws accord much better with
the upper-tail behavior. The improved fits suggest that the double power law
would be superior for estimating the coefficient of relative risk aversion, γ.

With respect to the equity premium, the key difference in Table I between
the double and single power laws is the substantially smaller upper-tail expo-
nents, α. Since the estimated α is now close to 4, rather than exceeding 6, the
upper tails are much fatter when gauged by the double power laws. These fat-
ter tails mean that a substantially lower coefficient of relative risk aversion, γ,
accords with the target equity premium of 0.05.

Equation (3) still determines the equity premium, re−rf . For given γ, a spec-
ification of (α�β�δ), along with z0 = 1�105, determines the relevant moments
of the disaster-size distribution. That is, we get a more complicated version
of equation (6). (As before, this formulation does not adjust for the partially
temporary nature of macroeconomic disasters.) Crucially, a finite re − rf still
requires α > γ. The results determine the estimate of γ that corresponds to
those for (α�β�δ) in Table I (still assuming σ = 0�02 and p= 0�0380 for C and
0.0383 for GDP). This procedure yields point estimates for γ of 3.00 from the
C disasters and 2.75 from the GDP disasters.

As before, we use bootstrap methods to determine standard errors and 95%
confidence intervals for the estimates of γ. Although the main parameter that
matters is the upper-tail exponent, α, we allow also for variations in β and δ.
For the C disasters, the estimated γ of 3.00 (Table I) has a standard error of
0.52, with a 95% confidence interval of (2�16�4�15). For GDP, the estimate of
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1581

2.75 has a standard error of 0.56, with a confidence interval of (2�04�4�21).
Thus, γ is estimated to be close to 3, with a 95% confidence band of roughly 2
to 4.10

Because of the fatter upper tails, the estimated γ around 3 is well below the
values around 4 estimated from single power laws (Table I). Given the much
better fit of the double power law, we concentrate on the estimated γ around 3.
As a further comparison, results based on the observed histograms for C and
GDP disasters (Barro and Ursua (2008, Tables 10 and 11)) indicated that a γ
in the vicinity of 3.5 was needed to generate the target equity premium of 0.05.

The last comparison reflects interesting differences in the two methods: the
moments of the size distribution that determine the equity premium in equa-
tion (3) can be estimated from a parametric form (such as the double power
law) that accords with the observed distribution of disaster sizes or from sam-
ple averages of the relevant moments (corresponding to histograms). A disad-
vantage of the parametric approach is that misspecification of the functional
form—particularly for the far upper tails that have few or no observations—
may give misleading results. In contrast, sample averages seem to provide con-
sistent estimates for any underlying functional form. However, the sample-
average approach is sensitive to a selection problem, whereby data tend to
be missing for the largest disasters (sometimes because governments have col-
lapsed or are fighting wars). This situation must apply to an end-of-world (or,
at least, end-of-country) scenario, discussed later, where b = 1. The tendency
for the largest disasters to be missing from the sample means that the sample-
average approach tends to underestimate the fatness of the tails, thereby lead-
ing to an overstatement of γ.11 In contrast, the parametric approach (with
a valid functional form) may be affected little by missing data in the upper
tail. That is, the estimate of the upper-tail exponent, α, is likely to have only
a small upward bias due to missing extreme observations, which have to be
few in number. This contrast explains why our estimated γ around 3 from the
double power laws (Table I) is noticeably smaller than the value around 3.5
generated by the observed histograms.

10For the threshold corresponding to b = 0�095, there are 99 C crises, with a disaster probabil-
ity, p, of 0.0380 per year and an average for b of 0.215. Using γ = 3�00, the average of (1 − b)−γ

is 2.90 and that for (1 − b)1−γ is 1.87. For b ≥ 0�275, corresponding to the cutoff, there are 22 C
crises, with p = 0�0077, average for b of 0.417, average for (1 − b)−γ of 7.12, and average for
(1 − b)1−γ of 3.45. For GDP, with the threshold corresponding to b = 0�095, there are 157 crises,
with p = 0�0383 and an average for b of 0.204. Using γ = 2�75, the average of (1−b)−γ is 2.58 and
that for (1 − b)1−γ is 1.68. For b ≥ 0�320, corresponding to the cutoff, there are 21 GDP crises,
with p = 0�0046, average for b of 0.473, average for (1 − b)−γ of 8.43, and average for (1 − b)1−γ

of 3.60.
11The magnitude of this selection problem has diminished with Ursua’s (2010) construction of

estimates of GDP and consumer spending for periods, such as the world wars, where standard
data were missing. Recent additions to his data set—not included in our current analysis—are
Russia, Turkey, and China (for GDP). As an example, the new data imply that the cumulative
contraction in Russia from 1913 to 1921 was 62% for GDP and 71% for C.

 14680262, 2011, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
8827 by C

apital U
niversity O

f, W
iley O

nline L
ibrary on [17/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1582 R. J. BARRO AND T. JIN

4. VARIATIONS IN DISASTER PROBABILITY, TARGET EQUITY PREMIUM,
AND THRESHOLD

We consider now whether the results on the estimated coefficient of relative
risk aversion, γ, are robust to uncertainty about the disaster probability, p, the
target equity premium, re − rf , and the threshold, z0, for disaster sizes. For p,
the estimate came from all the sample data, not just the disasters: p equaled
the ratio of the number of disasters (for C or GDP) to the number of nondisas-
ter years in the full sample. Thus, a possible approach to assessing uncertainty
about the estimate of p would be to use a model that incorporates all the data,
along the lines of Nakamura et al. (2011). We could also consider a richer set-
ting in which p varies over time, as in Gabaix (2010). We carry out here a more
limited analysis that assesses how “reasonable” variations in p influence the
estimates of γ.12

Figure 8 gives results for C, and analogous results apply for GDP (not
shown). Recall that the baseline value for p of 0.038 led to an estimate for γ of
3.00, with a 95% confidence interval of (2�16�4�15). Figure 8 shows that lower-
ing p by a full percentage point (to 0.028) increases the point estimate of γ to
3.2, whereas raising p by a full percentage point (to 0.048) decreases the point

FIGURE 8.—Estimates of the coefficient of relative risk aversion, γ, for alternative disaster
probabilities, given target equity premium of 0.05, threshold of z0 = 1�105, and σ = 0�020. These
results correspond to the estimated double power law for C in Table I.

12For a given set of observed disaster sizes (for C or GDP), differences in p do not affect the
maximum-likelihood estimates for the parameters of the power-law distributions. We can think
of differences in p as arising from changes in the overall sample size while holding fixed the
realizations of the number and sizes of disaster events.
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1583

estimate of γ to 2.8. Thus, substantial variations in p have only a moderate
effect on the estimated γ.

We assumed that the target equity premium was 0.05. More realistically,
there is uncertainty about this premium, which can also vary over time and
space (due, for example, to shifts in the disaster probability, p). As with our
analysis of p, we consider how reasonable variations in the target premium
influence the estimated γ. An allowance for a higher target equity premium
is also a way to adjust the model to account for the partly temporary nature
of macroeconomic disasters. That is, since equation (3) overstates the model’s
equity premium when the typical disaster is partly temporary (as described be-
fore), an increase in the target premium is a way to account for this overstate-
ment.

Equation (3) shows that variations in the equity premium, re − rf , on the left
side are essentially equivalent, but with the opposite sign, to variations in p on
the right side. Therefore, diagrams for estimates of γ versus re − rf look similar
to Figure 8, except that the slope is positive. Quantitatively, for the C data, if
re − rf were 0.03 rather than 0.05, the point estimate of γ would be 2.6 rather
than 3.0. On the other side, if re − rf were 0.07, the point estimate of γ would
be 3.2. Results with GDP are similar. Thus, substantial variations in the target
equity premium have only a moderate influence on the estimated γ.

The results obtained thus far apply for a fixed threshold of z0 = 1�105, corre-
sponding to proportionate contractions, b, of size 0.095 or greater. This choice
of threshold is arbitrary. In fact, our estimation of the cutoff value, δ, for the
double power laws in Table I amounts to endogenizing the threshold that ap-
plies to the upper tail of the distribution. We were able to estimate δ by MLE
because we included in the sample a group of observations that potentially lie
below the cutoff. Similarly, to estimate the threshold, z0, we would have to in-
clude observations that potentially lie below the threshold. As with estimates
of p, this extension requires consideration of all (or at least more of) the sam-
ple, not just the disasters.

As in the analysis of disaster probability and target equity premium, we as-
sess the impact of variations in the threshold on the estimated coefficient of rel-
ative risk aversion, γ. We consider a substantial increase in the threshold, z0, to
1.170, corresponding to b = 0�145, the value used in Barro (2006). This rise in
the threshold implies a corresponding fall in the disaster probability, p (gauged
by the ratio of the number of disasters to the number of nondisaster years in
the full sample). For the C data, the number of disasters declines from 99 to
62, and p decreases from 0.0380 to 0.0225. For the GDP data, the number of
disasters falls from 157 to 91 and p declines from 0.0383 to 0.0209. That is,
the probability of a disaster of size 0.145 or more is about 2% per year, corre-
sponding to roughly two events per century.

The results in Table II, for which the threshold is z0 = 1�170, can be com-
pared with those in Table I, where z0 = 1�105. For the single power law, the
rise in the threshold causes the estimated exponent, α, to adjust toward the
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1584 R. J. BARRO AND T. JIN

TABLE II

SINGLE AND DOUBLE POWER LAWS WITH HIGHER THRESHOLD, z0 = 1�170a

Parameter Point Estimate Standard Error 95% Confidence Interval

C Data (62 disasters)
Single power law

α 5.53 0.85 (4�16�7�61)
γ 3.71 0.53 (2�83�4�97)

Double power law
α 4.05 0.87 (2�81�6�12)
β 11.36 8.27 (6�63�39�78)
δ 1.37 0.15 (1�21�1�86)
γ 3.00 0.54 (2�21�4�29)

GDP Data (91 disasters)
Single power law

α 5.67 0.81 (4�39�7�49)
γ 3.86 0.51 (3�03�4�99)

Double power law
α 4.77 1.00 (2�42�6�24)
β 59.22 22.13 (7�90�76�73)
δ 1.20 0.17 (1�20�1�75)
γ 3.41 0.60 (2�04�4�34)

aSee the notes to Table I. Disasters are now all at least as large as the threshold z0 = 1�170, corresponding to
b ≥ 0�145. The disaster probability, p, is now 0.0225 for C and 0.0209 for GDP.

value estimated before for the upper part of the double power law (Table I).
Since the upper-tail exponents (α) were lower than the lower-tail exponents
(β), the estimated α for the single power law falls when the threshold rises.
For the C data, the estimated α decreases from 6.3 in Table I to 5.5 in Table II,
and the confidence interval shifts downward accordingly. The reduction in α
implies that the estimated γ declines from 4.0 in Table I to 3.7 in Table II, and
the confidence interval shifts downward correspondingly. Results for the single
power law for GDP are analogous.13

With a double power law, the change in the threshold has much less impact
on the estimated upper-tail exponent, α, which is the key parameter for the es-
timated γ. For the C data, the rise in the threshold moves the estimated α from
4.16 in Table I to 4.05 in Table II, and the confidence interval changes corre-

13These results apply even though the higher threshold reduces the disaster probability, p.
That is, disaster sizes in the range between 0.095 and 0.145 no longer count. As in Barro and
Ursua (2008, Tables 10 and 11), the elimination of these comparatively small disasters has only a
minor impact on the model’s equity premium and, hence, on the value of γ required to generate
the target premium of 0.05. The more important force is the thickening of the upper tail implied
by the reduction of the tail exponent, α.
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1585

spondingly little.14 These results imply that the results for γ also change little,
going from a point estimate of 3.00 with a confidence interval of (2�16�4�15) in
Table I to 3.00 with an interval of (2�21�4�29) in Table II. Results for GDP are
analogous. We conclude that a substantial increase in the threshold has little
effect on the estimated γ.

5. CAN THE EQUITY PREMIUM BE INFINITE?

Weitzman (2007), building on Geweke (2001), argued that the equity pre-
mium can be infinite (and the risk-free rate minus infinite) when the underlying
shocks are log normally distributed with unknown variance. In this context, the
frequency distribution for asset pricing is the t-distribution, for which the tails
can be sufficiently fat to generate an infinite equity premium. The potential for
an infinite equity premium arises also—perhaps more transparently—in our
setting based on power laws.

For a single power law, the equity premium, re − rf , in equation (6) rises with
the coefficient of relative risk aversion, γ, and falls with the tail exponent, α,
because a higher α implies a thinner tail. A finite equity premium requires α>
γ, and this condition still applies with a double power law, with α representing
the upper-tail exponent. Thus, it is easy to generate an infinite equity premium
in the power-law setting. For a given γ, the tail has only to be sufficiently fat;
that is, α has to satisfy α≤ γ.

However, we assume that the equity premium, re − rf , equals a known (fi-
nite) value, 0.05. The important assumption here is not that the premium
equals a particular number, but rather that it lies in an interval of something
like 0.03–0.07 and is surely not infinite. Our estimation, therefore, assigns no
weight to combinations of parameters, particularly of α and γ, that generate
a counterfactual premium, such as ∞. For given α (and the other parameters),
we pick (i.e., estimate) γ to be such that the premium equals the target, 0.05.
Estimates constructed this way always satisfy α > γ and, therefore, imply a fi-
nite equity premium.

The successful implementation of this procedure depends on having suffi-
cient data so that there are enough realizations of disasters to pin down the
upper-tail exponent, α, within a reasonably narrow range. Thus, it is important
that the underlying data set is very large in a macroeconomic perspective: 2963
annual observations on consumer expenditure, C, and 4653 on GDP. Conse-
quently, the numbers of disaster realizations—99 for C and 157 for GDP—are
sufficient to generate reasonably tight confidence intervals for the estimates
of α.

14The rise in the threshold widens the confidence interval for the estimated lower-tail expo-
nent, β. As the threshold rises toward the previously estimated cutoff, δ, the lower tail of the
distribution becomes increasingly less relevant.
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1586 R. J. BARRO AND T. JIN

Although our underlying data set is much larger than those usually used to
study macroeconomic disasters, even our data cannot rule out the existence
of extremely low probability events of astronomical size. Our estimated dis-
aster probabilities, p, were 3.8% per year for C and GDP, and the estimated
upper-tail exponents, α, were close to 4 (Table I). Suppose that there were a far
smaller probability p∗, where 0 < p∗ � p, of experiencing a super disaster;
that is, one drawn from a size distribution with a much fatter tail, character-
ized by an exponent α∗, where 0 < α∗ � α. If p∗ is extremely low, say 0.01%
per year, there is a good chance of seeing no realizations of super disasters
even with 5000 observations. Thus, our data cannot rule out the potential for
these events, and these far-out possibilities may matter. In particular, regard-
less of how low p∗ is, to fit the target equity premium of 0.05, the coefficient of
relative risk aversion, γ, has to satisfy γ < α∗ to get a finite equity premium.15

If α∗ can be arbitrarily low (a possibility not ruled out by direct observation
when p∗ is extremely low), the estimated γ can be arbitrarily close to zero. We,
thus, get a reversal of the Mehra–Prescott (1985) puzzle, where the coefficient
of relative risk aversion required to match the observed equity premium was
excessive by a couple orders of magnitude.16

Any upper bound B < 1 on the potential disaster size, b, would eliminate the
possibility of an infinite equity premium. In this sense, the extreme results de-
pend on the possibility of an end-of-the-world event, where b = 1. To consider
this outcome, suppose now that the very small probability p∗ refers only to
b = 1. In this case, it is immediate from equation (3) that the equity premium,
re − rf , is infinite if γ > 0. Thus, with the assumed form of utility function,17 any
positive probability of apocalypse (which cannot be ruled out by “data”), when
combined with an equity premium around 0.05, is inconsistent with a positive
degree of risk aversion.

The reference to an end-of-the-world event suggests a possible resolution
of the puzzle. The formula for the equity premium in equation (2) involves
a comparison of the return on equity, interpreted as a claim on aggregate con-
sumption, with that on a risk-free asset, interpreted as a short-term govern-
ment bill. However, no claim can deliver risk-free consumption (from whom
and to whom?) once the world has ended. Therefore, at least in the limit, we
have to allow for risk in the “risk-free” claim.

15The assumption here, perhaps unreasonable, is that constant relative risk aversion applies
arbitrarily far out into the tail of low consumption.

16This reversal is the counterpart of the one described in Weitzman (2007, p. 1110): “Should
we be trying to explain the puzzle pattern: why is the actually observed equity premium so embar-
rassingly high while the actually observed riskfree rate is so embarrassingly low� � �? Or should we
be trying to explain the opposite antipuzzle pattern: why is the actually observed equity premium
so embarrassingly low while the actually observed riskfree rate is so embarrassingly high� � �?”

17The result does not depend on the constant relative risk aversion form, but only on the con-
dition that the marginal utility of consumption approaches infinity as consumption tends toward
zero.
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SIZE DISTRIBUTION OF MACROECONOMIC DISASTERS 1587

Even if we restrict to b < 1, a disaster that destroys a large fraction, b, of con-
sumption is likely to generate partial default on normally low-risk assets such
as government bills. Empirically, this low return typically does not involve ex-
plicit default but rather high inflation and, thereby, low realized real returns on
nominally denominated claims during wartime (see Barro (2006, Section I.c)).
For the 99 C crises considered in the present analysis, we have data (mainly
from Global Financial Data) on real bill returns for 58, of which 33 were during
peacetime and 25 involved wars. The median realized real rates of return on
bills (arithmetic) were 0.014 in the peacetime crises, similar to that for the full
sample, and −0�062 in the wartime crises. Thus, the main evidence for partial
default on bills comes from wars that involved macroeconomic depressions.

To generalize the model (without specifically considering war versus peace),
suppose that the loss rate on government bills is Φ(b), where 0 ≤ Φ(b) ≤ 1.
We assume Φ(0) = 0, so that bills are risk-free in normal times. The formula
for the equity premium in equation (2) becomes

re − rf = γσ2 +p · E
{[b−Φ(b)] · [(1 − b)−γ − 1]}�(13)

Thus, instead of the loss rate, b, on equity, the formula involves the difference
in the loss rates during disasters on equity versus bills, b−Φ(b). We previously
assumed Φ(b) = 0, but a more reasonable specification is Φ′(b) ≥ 0, with Φ(b)
approaching 1 as b approaches 1. The equity premium in equation (13) will
be finite if, as b approaches 1, b−Φ(b) approaches 0 faster than (1 − b)−γ ap-
proaches infinity. In particular, the marginal utility of consumption (for a hypo-
thetical survivor) may be infinite if the world ends (b= 1), but the contribution
of this possibility to the equity premium can be nil because no asset can deliver
consumption once the world has disappeared.

6. SUMMARY OF MAIN FINDINGS

The coefficient of relative risk aversion, γ, is a key parameter for analyses of
behavior toward risk. We estimated γ by combining information on the proba-
bility and sizes of macroeconomic disasters with the observed long-term aver-
age equity premium. Specifically, we calculated what γ had to be to accord with
a target unlevered equity premium of 5% per year within a representative–
agent model that allows for rare disasters.

In our main calibration, based on the long-term global history of macroeco-
nomic disasters, the probability, p, of disaster (defined as a contraction in per
capita consumption or GDP by at least 10% over a short period) is 3.8% per
year. The size distribution of disasters accords well with a double power law,
with an upper-tail exponent, α, of about 4. The resulting estimate of γ is close
to 3, with a 95% confidence interval of 2 to 4. This finding is robust to whether
we consider consumer expenditure or GDP and to variations in the estimated
disaster probability, p, the target equity premium, and the threshold for the
size distribution. The results can also accommodate seemingly paradoxical sit-
uations in which the equity premium may appear to be infinite.
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